Skip to main content
Log in

Unmodulated diode laser stabilized by the Zeeman modulation technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The extended cavity diode lasers’ frequencies were stabilized by the usage of the 1st and 3rd derivatives signals obtained from hyperfine resonances of the 87Rb D2 line with the Zeeman modulation technique. By using the 3rd derivatives of the F = 1 → F/ = 2 and CO10–11 resonances 4.2 × 10−12 τ−1/2, 3.5 × 10−13 τ−1/2 and, 1.2 × 10−12 τ−1/2 frequency stability values were obtained at 1, 400 and 104 s integration times, respectively. Frequency stability measurements were also measured concerning derivative signals obtained from F = 2 → F/ = 3, CO21–23, and CO22–23 crossover resonances. The 1.4 × 10–12 τ−1/2 @1 s, 2.7 × 10–13 τ−1/2 @300 s, and 9.6 × 10−13 τ−1/2 @104 s frequency stability values were attained with using of 1st derivative of CO22–23, and CO21–23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T.J. Quinn, Metrologia 40, 103 (2003)

    Article  ADS  Google Scholar 

  2. Y. Bitou, K. Sasaki, H. Inaba, F.L. Hong, A. Onae, Opt. Eng. 43, 900 (2004)

    Article  ADS  Google Scholar 

  3. J. Vanier, C. Mandache, Appl. Phys. B 87, 565–593 (2007)

    Article  ADS  Google Scholar 

  4. S. Micalizio, C.E. Calosso, A. Godone, F. Levi, Metrologia 49, 425 (2012)

    Article  ADS  Google Scholar 

  5. J.D. Elgin, T.P. Heavner, J. Kitching, E.A. Donley, J. Denney, E.A. Salim, Appl. Phys. Lett. 115, 033503 (2019)

    Article  ADS  Google Scholar 

  6. P.D.D. Schwindt, S. Knappe, V. Shah, L. Hollberg, J. Kitching, Appl. Phys. Lett. 85, 6409 (2004)

    Article  ADS  Google Scholar 

  7. D.W. Preston, Am. J. Phys. 64, 1432 (1996)

    Article  ADS  Google Scholar 

  8. M. Himsworth, T. Freegarde, Phys. Rev. A 81, 023423 (2010)

    Article  ADS  Google Scholar 

  9. W. Demtröder, Laser Spectroscopy (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  10. G.C. Bjorklund, M.D. Levenson, W. Lenth, C. Ortiz, Appl. Phys. B 32, 145–152 (1983)

    Article  ADS  Google Scholar 

  11. C. Wieman, T.W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976)

    Article  ADS  Google Scholar 

  12. M.L. Haris, C.S. Adams, S.L. Cornish, I.C. Mcleod, E. Tarleton, I.G. Hughes, Phys. Rev A 73, 062509 (2006)

    Article  ADS  Google Scholar 

  13. K.L. Corwin, Z.T. Lu, C.F. Hand, R.J. Epstein, C.E. Wienman, Appl. Opt. 37, 15 (1998)

    Article  Google Scholar 

  14. S. Nakayama, J. Phys. Soc. Jpn. 53, 3351–3361 (1984)

    Article  ADS  Google Scholar 

  15. S.E. Park, H.S. Lee, T.Y. Kwon, H. Cho, Opt. Commun. 192, 49–55 (2001)

    Article  ADS  Google Scholar 

  16. Y. Ovchinnikov, M. Giuseppe, Metrologia 48, 87–100 (2011)

    Article  ADS  Google Scholar 

  17. S. Singh, B. Jain, S.P. Ram, V.B. Tiwari, S.R. Mıshra, Pramana J Phys. 95, 67 (2021)

    Article  ADS  Google Scholar 

  18. https://www.bipm.org/documents/20126/41590994/87Rb_780nm_2015.pdf/83949ec4-c81c-7b8c-98f1-e4d191987e71. Accessed 11 Oct 2021

  19. C. Affolderbach, G. Mileti, Rev. Sci. Instrum. 76, 3108 (2005)

    Article  Google Scholar 

  20. D.Q. Su, T.F. Meng, Z.H. Ji, J.P. Yuan, Y.T. Zhao, L.T. Xiao, S.T. Jia, Appl. Opt. 53, 30 (2014)

    Google Scholar 

  21. V.B. Tiwari, S. Singh, S.R. Mishra, H.S. Rawat, S.C. Mehendale, Appl. Phys. B 83, 93–96 (2006)

    Article  ADS  Google Scholar 

  22. V. Singh, V.B. Tiwari, S.R. Mishra, J. Opt. Soc. Am. B 38, 249 (2021)

    Article  ADS  Google Scholar 

  23. G. Yang, X. Geng, Q. Yu, S. Liang, Y. Zhu et al., J. Opt. Soc. Am. B 37, 574 (2020)

    Article  ADS  Google Scholar 

  24. J. Ye, S. Swartz, P. Jungner, J.L. Hall, Opt. Lett. 21, 16 (1996)

    Google Scholar 

  25. C. Affolderbach, G. Mileti, Opt. Lasers Eng. 43, 291–302 (2005)

    Article  Google Scholar 

  26. A. Quessada, R.P. Kovacich, I. Courtillot et al., J. Opt. B Quantum Semiclass Opt. 5, 150–154 (2003)

    Article  Google Scholar 

  27. S. Kang, M. Gharavipour, C. Affolderbach, F. Gruet, G. Mileti, J. Appl. Phys. 117, 4510 (2015)

    Google Scholar 

  28. U. Tanaka, T. Yabuzaki, Jpn. Appl Phys. 33, 1614–1622 (1994)

    Article  ADS  Google Scholar 

  29. T. Ikegami, S. Ohshima, M. Ohtsu, Jpn. J. Appl. Phys. 28, 1839–1841 (1989)

    Article  Google Scholar 

  30. H.S. Lee, S.H. Yang, Y.B. Kim, S.E. Park, H. Cho, J.D. Park, Jpn. Appl. Phys. 35, 276–280 (1996)

    Article  ADS  Google Scholar 

  31. W.J. Riley, Handbook of Frequency Stability Analysis (NIST Special Publication 1065, 2008)

  32. J.A. Barnes, D.W. Allan, Variances Based on Data with Dead Time Between the Measurements (NIST Technical Note 1318, 1990)

  33. G. Mileti, P. Thomann, Proceedings of the 9th European Frequency and Time Forum, vol. 271 (1995)

  34. https://www.moglabs.com/products/laser-electronics/diode-laser-controller/MOGLabs_DLC_manual_rev947.pdf. Accessed 11 Oct 2021

  35. W.J. Riley, Software for Frequency Stability Analysis Program (2021). http://www.stable32.com/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ersoy Şahin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şahin, E. Unmodulated diode laser stabilized by the Zeeman modulation technique. Appl. Phys. B 127, 148 (2021). https://doi.org/10.1007/s00340-021-07697-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07697-4

Navigation