Skip to main content
Log in

Halogenated hydrocarbon gas sensing by rotational absorption spectroscopy in the 220–330 GHz frequency range

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Gas sensing for halogenated hydrocarbons is demonstrated using rotational absorption spectroscopy in the 220–330 GHz frequency range, carried out with a compact and robust broadband microelectronics-based THz-wave spectrometer. Monitoring of halogenated hydrocarbons is necessary in industrial situations where these chemicals present a danger to human health and the environment, due to their toxicity, volatility, and reactivity. The absorption spectra for pure chloromethane, dichloromethane, chloroform, iodomethane, and dibromomethane were characterized at 297 K and pressures from 0.25 to 16 Torr. The spectra show the unique rotational fingerprints for the target halogenated hydrocarbons in the 220–330 GHz frequency range and demonstrate the potential for their selective quantitative detection in gas sensing applications with minimum detection for pure gases of order 1012–1013 molecules/cm3 and for dilute gases of order 10–100 ppm at 1 atm for a 1 m pathlength. The study further demonstrates the potential of all-electronic miniaturized THz-wave gas sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.M. Smith, M.A. Arnold, Anal. Chem. 87, 10679 (2015)

    Article  Google Scholar 

  2. Y.-D. Hsieh, S. Nakamura, D.G. Abdelsalam, T. Minamikawa, Y. Mizutani, H. Yamamoto, T. Iwata, F. Hindle, T. Yasui, Sci. Rep. 6, 28114 (2016)

    Article  ADS  Google Scholar 

  3. Y. Yang, A. Shutler, D. Grischkowsky, Opt. Express 19, 8830 (2011)

    Article  ADS  Google Scholar 

  4. S.L. Drexheimer, Terahertz Spectroscopy Principles and Applications (CRC Press, Boca Raton, 2008)

    Google Scholar 

  5. A. Tekawade, T.E. Rice, M.A. Oehlschlaeger, M.W. Mansha, K. Wu, M.M. Hella, I. Wilke, Appl. Phys. B 124, 105 (2018)

    Article  ADS  Google Scholar 

  6. M.W. Mansha, K. Wu, T.E. Rice, M.A. Oehlschlaeger, I. Wilke, M.M. Hella, IEEE Sensors J. 21(4), 4553–4562 (2020)

    Article  ADS  Google Scholar 

  7. T.E. Rice, M.W. Mansha, M.A.Z. Chowdhury, M.M. Hella, I. Wilke, M.A. Oehlschlaeger, Appl. Phys. B 126, 1 (2020)

    Article  Google Scholar 

  8. N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, H.W. Hübers, Sensors (Switzerland) 19, 1 (2019)

    Article  Google Scholar 

  9. I. R. Medvedev, R. Schueler, J. Thomas, O. Kenneth, H.-J. Nam, N. Sharma, Q. Zhong, D. J. Lary, and P. Raskin, 2016 41st International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz)

  10. D. Bigourd, A. Cuisset, F. Hindle, S. Matton, R. Bocquet, G. Mouret, F. Cazier, D. Dewaele, H. Nouali, Appl. Phys. B 86, 579 (2007)

    Article  ADS  Google Scholar 

  11. C.F. Neese, I.R. Medvedev, G.M. Plummer, A.J. Frank, C.D. Ball, F.C. De Lucia, IEEE Sensors J. 12, 2565 (2012)

    Article  ADS  Google Scholar 

  12. R. Hossaini, M.P. Chipperfield, S.A. Montzka, A.A. Leeson, S.S. Dhomse, J.A. Pyle, Nature Comm. 8, 15962 (2017)

    Article  ADS  Google Scholar 

  13. M.A.K. Khalil, R.A. Rasmussen, Atmos. Environ. 33, 1305 (1999)

    Article  ADS  Google Scholar 

  14. T. Vannelli, A. Studer, M. Kertesz, T. Leisinger, Appl. Environ. Microbiol. 64, 1933 (1998)

    Article  ADS  Google Scholar 

  15. L. J. Carpenter, S. Reimann, J. B. Burkholder, C. Clerbaux, B. D. Hall, R. Hossaini, J. C. Laube, and S. A. Yvon-Lews, Update on ozone-depleting substances (ODSs) and other gases of interest to the Montreal protocol. Scientific assessment of ozone depletion (2014)

  16. D.B. Harper, Biochem. Soc. Trans. 22(4), 1007–1010 (1994)

    Article  Google Scholar 

  17. A. McCulloch, M.L. Aucott, C.M. Benkovitz, T.E. Graedel, G. Kleiman, P.M. Midgley, Y.F. Li, J. Geophys. Res. Atmos. 104, 8391 (1999)

    Article  ADS  Google Scholar 

  18. P. Chaignaud, M. Morawe, L. Besaury, E. Kröber, S. Vuilleumier, F. Bringel, S. Kolb, ISME J. 12, 2681 (2018)

    Article  Google Scholar 

  19. J.M. Lobert, W.C. Keene, J.A. Logan, R. Yevich, J. Geophys. Res. Atmos. 104, 8373 (1999)

    Article  ADS  Google Scholar 

  20. L. Derendorp, A. Wishkerman, F. Keppler, C. McRoberts, R. Holzinger, T. Röckmann, Chemosphere 87, 483 (2012)

    Article  ADS  Google Scholar 

  21. S. Li, M.K. Park, C.O. Jo, S. Park, J. Atmos. Chem. 74, 227 (2017)

    Article  Google Scholar 

  22. R. Hossaini, M.P. Chipperfield, S.A. Montzka, A. Rap, S. Dhomse, W. Feng, Nat. Geosci. 8, 186 (2015)

    Article  ADS  Google Scholar 

  23. P. G. Simmonds, A. J. Manning, D. M. Cunnold, A. McCulloch, S. ODoherty, R. G. Derwent, P. B. Krummel, P. J. Fraser, B. Dunse, L. W. Porter, R. H. J. Wang, B. R. Greally, B. R. Miller, P. Salameh, R. F. Weiss, and R. G. Prinn, J. Geophys 2006. Res. Atmos Doi: https://doi.org/10.1029/2006JD007082

  24. M.L. Cox, G.A. Sturrock, P.J. Fraser, S.T. Siems, P.B. Krummel, S. O’Doherty, J. Atmos. Chem. 45, 79 (2003)

    Article  Google Scholar 

  25. M. A. K. Khalil, Reactive chlorine compounds in the atmosphere. In: Reactive halogen compounds in the atmosphere, (Springer, Berlin, Heidelberg, 1999), p. 45–79

  26. R.V. Branchflower, D.S. Nunn, R.J. Highet, J.H. Smith, J.B. Hook, L.R. Pohl, Toxicol. Appl. Pharmacol. 72, 159 (1984)

    Article  Google Scholar 

  27. P.M. Perillo, D.F. Rodríguez, Sens. Actuators B Chem. 193, 263 (2014)

    Article  Google Scholar 

  28. C.D. Odowd, J.L. Jimenez, R. Bahreini, R.C. Flagan, J.H. Seinfeld, K. Hämerl, L. Pirjola, M. Kulmala, T. Hoffmann, Nature 417, e632 (2002)

    Article  ADS  Google Scholar 

  29. R.J. Huang, K. Seitz, J. Buxmann, D. Pöhler, K.E. Hornsby, L.J. Carpenter, U. Platt, T. Hoffmann, Atmos. Chem. Phys. 10, 4823 (2010)

    Article  ADS  Google Scholar 

  30. M. Guo, S. Gao, J. Environ. Qual. 38, 513 (2009)

    Article  Google Scholar 

  31. R.J. Salawitch, M.B. McElroy, J.H. Yatteau, S.C. Wofsy, M.R. Schoeberl, L.R. Lait, P.A. Newman, K.R. Chan, M. Loewenstein, J.R. Podolske, S.E. Strahan, M.H. Proffitt, Geophys. Res. Lett. 17, 561 (1990)

    Article  ADS  Google Scholar 

  32. B.M. Sinnhuber, M.P. Chipperfield, S. Davies, J.P. Burrows, K.U. Eichmann, M. Weber, P. Von Der Gathen, M. Guirlet, G.A. Cahill, A.M. Lee, J.A. Pyle, Geophys. Res. Lett. 27, 3473 (2000)

    Article  ADS  Google Scholar 

  33. D. Yoffe, R. Frim, S. D. Ukeles, M. J. Dagani, H. J. Barda, T. J. Benya, and D. C. Sanders 2000 Bromine compounds. Ullmann's Encyclopedia of Industrial Chemistry, 1–31

  34. A. Mellouki, R.K. Talukdar, A.-M. Schmoltner, T. Gierczak, M.J. Mills, S. Solomon, A.R. Ravishankara, Geophys Res. Lett. 19, e2059 (1992)

    Article  ADS  Google Scholar 

  35. L.N. Stříteská, M. Šimečková, P. Kania, P. Musil, L. Kolesniková, J. Koubek, Š Urban, J. Mol. Struct. 919, 89 (2009)

    Article  ADS  Google Scholar 

  36. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, H.S.P. Müller, J. Quant. Spectro. Rad. Trans. 60, 883 (1998)

    Article  ADS  Google Scholar 

  37. D. Boucher, J. Burie, D. Dangoisse, J. Demaison, A. Dubrulle, Chem. Phys. 29, 323 (1978)

    Article  Google Scholar 

  38. F. Tullini, G.D. Nivellini, M. Carlotti, B. Carli, J. Mol. Spectro. 138, 355 (1989)

    Article  ADS  Google Scholar 

  39. D. Chadwick, D.J. Millen, Trans. Faraday Soc. 67, 1539 (1971)

    Article  Google Scholar 

  40. Y. Niide, H. Tanaka, I. Ohkoshi, J. Mol. Spectro. 139, 11 (1990)

    Article  ADS  Google Scholar 

  41. J.H. Carpenter, P.J. Seo, D.H. Whiffen, J. Mol. Spectro. 170, 215 (1995)

    Article  ADS  Google Scholar 

  42. J.M. Colmont, D. Priem, P. Dréan, J. Demaison, J.E. Boggs, J. Mol. Spectro. 191, 158 (1998)

    Article  ADS  Google Scholar 

  43. A.S. Dudaryonok, N.N. Lavrentieva, J.V. Buldyreva, J. Quant. Spectro. Rad. Trans. 130, 321 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation under Grant No. CBET-1851291.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. E. Rice.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1155 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rice, T.E., Chowdhury, M.A.Z., Mansha, M.W. et al. Halogenated hydrocarbon gas sensing by rotational absorption spectroscopy in the 220–330 GHz frequency range. Appl. Phys. B 127, 123 (2021). https://doi.org/10.1007/s00340-021-07667-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07667-w

Navigation