Skip to main content
Log in

Quantitative analysis of titanium alloys using one-point calibration laser-induced breakdown spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The development of real-time and on-line quantitative composition analysis is desired for the products quality improvement in the metal producing and processing industries. Accuracy is still a challenge for classical calibration-free laser-induced breakdown spectroscopic (CF-LIBS) quantitative analysis due to the influence of the inaccurate plasma temperature calculations, uncertainties associated with Einstein coefficients and imprecise efficiency of spectral detection system. In this paper, we present an improving quantitative analysis for both major and minor elements in titanium alloys using the one-point calibration LIBS (OPC-LIBS) method. In OPC-LIBS, one matrix-matched standard sample of known composition was used to synchronously correct the essential experimental and spectroscopic parameters. A Saha–Boltzmann plot covering a large energy range was used to obtain more accurate plasma temperature and electron density values. From the comparison results, the OPC-LIBS method leads to a more accurate determination of the titanium alloy composition compared with the conventional CF-LIBS approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.R. Boyer, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 213, 103 (1996)

    Article  Google Scholar 

  2. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, Acta Mater. 117, 371 (2016)

    Article  ADS  Google Scholar 

  3. L. Song, W. Huang, X. Han, J. Mazumder, IEEE Trans. Ind. Electron. 64, 633 (2017)

    Article  Google Scholar 

  4. V.N. Lednev, P.A. Sdvizhenskii, R.D. Asyutin, R.S. Tretyakov, M.Y. Grishin, A.Y. Stavertiy, A.N. Fedorov, S.M. Pershin, Opt. Express 27, 4612 (2019)

    Article  ADS  Google Scholar 

  5. Z. Wang, T.-B. Yuan, Z.-Y. Hou, W.-D. Zhou, J.-D. Lu, H.-B. Ding, X.-Y. Zeng, Front. Phys. 9, 419 (2014)

    Article  ADS  Google Scholar 

  6. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347 (2012)

    Article  ADS  Google Scholar 

  7. A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc. 53, 960 (1999)

    Article  ADS  Google Scholar 

  8. S.M. Pershin, F. Colao, V. Spizzichino, Laser Phys. 16, 455 (2006)

    Article  ADS  Google Scholar 

  9. M.L. Shah, A.K. Pulhani, G.P. Gupta, B.M. Suri, Appl. Opt. 51, 4612 (2012)

    Article  ADS  Google Scholar 

  10. H. Fu, F. Dong, H. Wang, J. Jia, Z. Ni, Appl. Spectrosc. 71, 1982 (2017)

    Article  ADS  Google Scholar 

  11. A. Jabbar, Z. Hou, J. Liu, R. Ahmed, S. Mahmood, Z. Wang, Spectrochim. Acta Part B At. Spectrosc. 157, 84 (2019)

    Article  ADS  Google Scholar 

  12. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Appl. Opt. 42, 6133 (2003)

    Article  ADS  Google Scholar 

  13. S. Pandhija, A.K. Rai, Appl. Phys. B Lasers Opt. 94, 545 (2009)

    Article  ADS  Google Scholar 

  14. A. Jabber, M. Akhtar, A. Ali, S. Mehmood, S. Iftikhar, M.A. Baig, Optoelectron. Lett. 15, 57 (2019)

    Article  ADS  Google Scholar 

  15. M. Corsi, G. Cristoforetti, M. Hidalgo, S. Legnaioli, V. Palleschi, A. Salvetti, E. Tognoni, C. Vallebona, Appl. Geochem. 21, 748 (2006)

    Article  Google Scholar 

  16. R. Kumar, A.K. Rai, D. Alamelu, S.K. Aggarwal, Environ. Monit. Assess. 185, 171 (2013)

    Article  Google Scholar 

  17. K. Ibano, D. Nishijima, Y. Ueda, R.P. Doerner, J. Nucl. Mater. 522, 324 (2019)

    Article  ADS  Google Scholar 

  18. F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G.G. Ori, L. Marinangeli, A. Baliva, Planet. Space Sci. 52, 117 (2004)

    Article  ADS  Google Scholar 

  19. G.S. Senesi, G. Tempesta, P. Manzari, G. Agrosi, Geostand. Geoanal. Res. 40, 533 (2016)

    Article  Google Scholar 

  20. A. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, (National Institute of Standards and Technology, Gaithersburg, 2019).

  21. G. Cavalcanti, D. Teixeira, S. Legnaioli, G. Lorenzetti, L. Pardini, V. Palleschi, Spectrochim. Acta Part B 87, 51 (2013)

    Article  ADS  Google Scholar 

  22. H. Fu, H. Wang, J. Jia, Z. Ni, F. Dong, Appl. Spectrosc. 72, 1183 (2018)

    Article  ADS  Google Scholar 

  23. L.C.L. Borduchi, D.M.B.P. Milori, P.R. Villas-Boas, Spectrochim. Acta Part B 160, 105692 (2019)

    Article  Google Scholar 

  24. R. Hai, Z. He, X. Yu, L. Sun, D. Wu, H. Ding, Opt. Express 27, 2509 (2019)

    Article  ADS  Google Scholar 

  25. T.C. Wing, R.E. Russo, Spectrochim. Acta Part B At. Spectrosc. 46, 1471 (1991)

    Article  ADS  Google Scholar 

  26. X. Mao, W.-T. Chan, M. Caetano, M.A. Shannon, R.E. Russo, Appl. Surf. Sci. 96, 126 (1996)

    Article  ADS  Google Scholar 

  27. R.E. Russo, Appl. Spectrosc. 49, A14 (1995)

    Article  ADS  Google Scholar 

  28. L. Thijs, F. Verhaeghe, T. Craeghs, J. Van Humbeeck, J.P. Kruth, Acta Mater. 58, 3303 (2010)

    Article  ADS  Google Scholar 

  29. W. Xu, M. Brandt, S. Sun, J. Elambasseril, Q. Liu, K. Latham, K. Xia, M. Qian, Acta Mater. 85, 74 (2015)

    Article  Google Scholar 

  30. A.W. Miziolek, V. Palleschi, I. Schechter, Laser Induced Breakdown Spectroscopy (Cambridge University Press, Cambridge, 2006).

    Book  Google Scholar 

  31. R.H. Huddlestone, S.L. Leonard, Plasma Diagnostic Techniques (Academic Press, New York, 1965).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China (No. 2017YFE0301304), the National MCF Energy R&D Program of China (No. 2019YFE03080100), the National Natural Science Foundation of China (Nos. 11705020, 51837008, 11861131010), China Postdoctoral Science Foundation (Nos. 2018M630285, 2019M661087), Fundamental Research Funds for the Central Universities (Nos. DUT19RC(4)031, DUT18TD02) and Project SKLD18KM12 supported by China State Key Lab. of Power System.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongbin Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, R., Tong, W., Wu, D. et al. Quantitative analysis of titanium alloys using one-point calibration laser-induced breakdown spectroscopy. Appl. Phys. B 127, 37 (2021). https://doi.org/10.1007/s00340-021-07579-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07579-9

Navigation