Skip to main content
Log in

3.5 ps burst mode pulses based on all-normal dispersion harmonic mode-locked

  • Published:
Applied Physics B Aims and scope Submit manuscript

A Correction to this article was published on 02 June 2021

This article has been updated

Abstract

A polarization-maintaining (PM) fiber-coupled acousto-optic modulator (AOM) was used, in the present work, to tailor the stable 3.523 picosecond (ps) mode-locked pulses generated by an all PM fiber oscillator. The pulse clusters with 7.315 MHz, 731.5 kHz, and 73.15 kHz of repetition rate were obtained. The number of pulses in each pulse cluster could be adjusted from 1 to 6. Through the harmonic mode-locked (HML) technology, the tunability of the fiber laser was remarkably improved. Ultimately, the tunable number of pulses were extended to 8, 10, and 12, and obtained 4, 6 and 8 pulses with equal amplitude respectively, providing a greater flexibility than previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. J. Kleinbauer, R. Knappe, R. Wallenstein, Appl. Phys. B Lasers Opt. 80(3), 315–320 (2005)

    ADS  Google Scholar 

  2. H.Y. Lin, D. Sun, N. Copner, W.Z. Zhu, Opt. Mater. 69, 250–253 (2017)

    ADS  Google Scholar 

  3. X. Liu, R.M. Osgood, Y.A. Vlasov et al., Nat. Photonics 4(8), 557–560 (2010)

    ADS  Google Scholar 

  4. F. Dausinger, H. Hugel, V.I. Konov, Proc. SPIE 5147, 106–115 (2003)

    ADS  Google Scholar 

  5. F. Dausinger, Proc. SPIE 5777, 840–845 (2005)

    ADS  Google Scholar 

  6. M. Lapczyna, K.P. Chen, P.R. Herman et al., Appl. Phys. A Mater. Sci. Process. 69(1), S883–S886 (1999)

    Google Scholar 

  7. A. Nebel, T. Hermann, B. Henrich, R. Knappe et al., Proc. SPIE 6108, 610812 (2006)

    Google Scholar 

  8. H. Kalaycıoğlu, K. Eken, F.Ö. Ilday, Opt. Lett. 36(17), 3383–3385 (2011)

    ADS  Google Scholar 

  9. H. Kalaycioglu, Ö. Akçaalan, S. Yavaş et al., J. Opt. Soc. Am. B 32(5), 900–906 (2015)

    ADS  Google Scholar 

  10. G. Livescu, L.M.F. Chirovsky et al., Opt. Lett. 20(22), 2324–2326 (1995)

    ADS  Google Scholar 

  11. C.W. Siders, J.L.W. Siders et al., App. Opt. 37(22), 5302–5305 (1998)

    ADS  Google Scholar 

  12. L.L. Ming, M. Chen, G. Li, Appl. Phys. B 123(5), 151 (2017)

    ADS  Google Scholar 

  13. R. Knappe, Proc. SPIE. 82430I, 1–7 (2012)

    Google Scholar 

  14. Z.X. Bai, C. Yang, L.Y. Chen et al., Opt. Laser Technol. 46, 25–28 (2013)

    ADS  Google Scholar 

  15. M.N. Slipchenko, J.D. Miller, S. Roy et al., Opt. Lett. 39(16), 4735–4738 (2014)

    ADS  Google Scholar 

  16. P. Elahi et al., Opt. Lett. 39(2), 236–239 (2014)

    ADS  Google Scholar 

  17. L.A. Gomes, L. Orsila, T. Jouhti et al., IEEE J. Sel. Top. Quantum Electron 10(1), 129–136 (2004)

    ADS  Google Scholar 

  18. O. Katz, Y. Sintov, Opt. Commun. 281(10), 2874–2878 (2008)

    ADS  Google Scholar 

  19. M. Zhang, L.L. Chen, C. Zhou et al., Laser Phys. Lett. 6(9), 657–660 (2009)

    ADS  Google Scholar 

  20. F.Q. Lian, Z.W. Fan, X.F. Wang et al., Laser Phys. 21(6), 1103–1107 (2011)

    ADS  Google Scholar 

  21. J. Liu, J. Xu, P. Wang, IEEE Photonics Technol. Lett 24(7), 539–541 (2011)

    ADS  Google Scholar 

  22. J.B. Lecourt, S. Boivinet, Y. Hernandez, Proc. SPIE 8551, 85510A (2012)

    Google Scholar 

  23. J.B. Lecourt, C. Duterte, F. Narbonneau et al., Opt. Express 20(11), 11918–11923 (2012)

    ADS  Google Scholar 

  24. B. Ortac, A. Hideu, M. Brunel, Opt. Lett. 29(17), 1995–1997 (2004)

    ADS  Google Scholar 

  25. J.L. Wang, X.B. Bu, R. Wang, Appl. Opt. 53(23), 5088–5091 (2014)

    ADS  Google Scholar 

  26. L.J. Kong, X.S. Xiao, C.X. Yang, Chin. Phys. B 20(2), 024207 (2011)

    ADS  Google Scholar 

  27. D.F. Liu, X.J. Zhu, C.H. Wang et al., IEEE Photonics Technol. Lett. 22(23), 1726–1728 (2010)

    ADS  Google Scholar 

  28. X.J. Zhu, C.H. Wang, S.X. Liu et al., IEEE Photonics Technol. Lett. 24(9), 754–756 (2012)

    ADS  Google Scholar 

  29. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, G. Martel, Opt. Fiber Technol. 14(4), 262–267 (2008)

    ADS  Google Scholar 

  30. X.L. Li, C. Shang, Z.J. Yang et al., Asia Commun. Photonics Conf. (2018). https://doi.org/10.1109/ACP.2018.8595788

    Article  Google Scholar 

  31. S.S. Huang, Y.G. Wang, P.G. Yan, Laser Phys. 24(1), 015001 (2014)

    ADS  Google Scholar 

  32. F. Krausz et al., IEEE J. Quantum Electron 28(10), 2097–2122 (1992)

    ADS  Google Scholar 

  33. H.A. Haus, IEEE J. Sel. Top. Quantum Electron 6(6), 1173–1185 (2000)

    ADS  Google Scholar 

  34. X.L. Tian, M. Tang, X.P. Cheng et al., Opt. Express 17(9), 7222–7227 (2009)

    ADS  Google Scholar 

  35. B. Ortaç, M. Plötner, J. Limpert et al., Opt. Express 15(25), 16794–16799 (2007)

    ADS  Google Scholar 

  36. A. Agnesi, L. Carrà, F. Pirzio et al., J. Opt. Soc. Am. B 30(11), 2960–2965 (2013)

    ADS  Google Scholar 

  37. C. Hönninger, R. Paschotta, F. Morier-Genoud et al., J. Opt. Soc. Am. B 16, 46–56 (1999)

    ADS  Google Scholar 

  38. A. Agnesi, L. Carrà, C. Di Marco et al., IEEE Photonics Technol. Lett. 24(11), 927–929 (2012)

    ADS  Google Scholar 

  39. F. Amrani, A. Haboucha, M. Salhi, Appl. Phys. B 99(1–2), 107–114 (2010)

    ADS  Google Scholar 

  40. K. Guesmi, G. Semaan, M. Salhi et al., Rom. J. Phys. 61(7–8), 1330–1338 (2016)

    Google Scholar 

  41. Y.J. Deng, W.H. Knox, Opt. Lett. 29(18), 2121–2123 (2004)

    ADS  Google Scholar 

  42. G. Martel, C. Chédot, A. Hideur, P. Grelu, Fiber. Integr. Opt. 27(5), 302–340 (2008)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank every member of School of Electronic Science and Engineering in Xiamen University and Nanguang Hi-Tech (Xiamen) Laser Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haolin Yang.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Chen, Y., Ding, K. et al. 3.5 ps burst mode pulses based on all-normal dispersion harmonic mode-locked. Appl. Phys. B 126, 127 (2020). https://doi.org/10.1007/s00340-020-07481-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-020-07481-w

Navigation