Skip to main content
Log in

Nonradiative analysis of adulteration in coconut oil by thermal lens technique

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Adulteration of food is a serious issue that impacts personal and social health. Using highly sensitive and nondestructive single-beam thermal lens technique, the present work analyses the adulteration of edible coconut oil with hazardous paraffin oil. The present study overcomes the limitations with conventional spectroscopic technique, as it employs the photothermal technique for the trace detection of adulterants and nonradiative energy release. Samples prepared with trace amount of paraffin oil in coconut oil were subjected to ultraviolet (UV)–visible spectroscopic characterization. The study reveals that the optical absorption and thermal diffusivity decrease with the increase of the adulterant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L.M. Reid, C.P. O’donnell, G. Downey, Trends Food Sci. Technol. 17, 344 (2006)

    Article  Google Scholar 

  2. T.V. Oommen, I.E.E.E. Electr, Insul. Mag. 18, 6 (2002)

    Article  Google Scholar 

  3. N.H. Jayadas, K.P. Nair, G. Ajithkumar, Tribol. Int. 40, 350 (2007)

    Article  Google Scholar 

  4. M. Sheeba, M. Rajesh, C.P.G. Vallabhan, V.P.N. Nampoori, P. Radhakrishnan, Meas. Sci. Technol. 16, 2247 (2005)

    Article  ADS  Google Scholar 

  5. A. Rohman, Y.B. Che Man, A. Ismail, P. Hashim, J. Am. Oil Chem. Soc. 87, 601 (2010)

    Article  Google Scholar 

  6. A.A. Christy, S. Kasemsumran, Y. Du, Y. Ozaki, Anal. Sci. 20, 935 (2004)

    Article  Google Scholar 

  7. V. Baeten, M. Meurens, M.T. Morales, R. Aparicio, J. Agric. Food Chem. 44, 2225 (1996)

    Article  Google Scholar 

  8. E.C. López-Díez, G. Bianchi, R. Goodacre, J. Agric. Food Chem. 51, 6145 (2003)

    Article  Google Scholar 

  9. M.F. Barbosa, H.V. Dantas, A.S. de Pontes, W.S. da Lyra, P.H.G.D. Diniz, M.C.U. de Araújo, E.C. da Silva, LWT Food Sci. Technol. 63, 1037 (2015)

    Article  Google Scholar 

  10. N.A. Marigheto, E.K. Kemsley, M. Defernez, R.H. Wilson, J. Am. Oil Chem. Soc. 75, 987 (1998)

    Article  Google Scholar 

  11. A. Rosencwaig, Anal. Chem. 47, 592A (1975)

    Article  Google Scholar 

  12. J. Sell, Photothermal investigations of solids and fluids (Elsevier, Amsterdam, 2012)

    Google Scholar 

  13. A.C. Tam, Rev. Mod. Phys. 58, 381 (1986)

    Article  ADS  Google Scholar 

  14. S. Sankararaman, J. Mater. Sci. Nanotechnol. 4, 204 (2016). https://doi.org/10.15744/2348-9812.4.204.

    Article  Google Scholar 

  15. S. Bialkowski, Photothermal spectroscopy methods for chemical analysis (Wiley, Hoboken, 1996)

    Book  Google Scholar 

  16. M.S. Swapna, S. Manjusha, V. Raj, M. Hari, S. Sankararaman, J. Opt. Soc. Am. B 35, 1662 (2018)

    Article  ADS  Google Scholar 

  17. R.D. Snook, R.D. Lowe, Analyst 120, 2051 (1995)

    Article  ADS  Google Scholar 

  18. M. Franko, Talanta 54, 1 (2001)

    Article  Google Scholar 

  19. S. Sankara Raman, Investigation on thermal diffusivity of some selected materials using laser induced photoacoustic technique (Cochin University of Science and Technology, Cochin, Kerala, 1999)

    Google Scholar 

  20. M. Havaux, L. Lorrain, R.M. Leblanc, Photosynth. Res. 24, 63 (1990)

    Article  Google Scholar 

  21. S. Sankara Raman, V.P.N. Nampoori, C.P.G. Vallabhan, G. Ambadas, S. Sugunan, J. Appl. Phys. 85, 1987 (1999)

    Article  ADS  Google Scholar 

  22. C.C. Ghizoni, L.C.M. Miranda, Phys. Rev. B 32, 8392 (1985)

    Article  ADS  Google Scholar 

  23. S. Sankara Raman, V.P.N. Nampoori, C.P.G. Vallabhan, G. Ambadas, S. Sugunan, Appl. Phys. Lett. 67, 2939 (1995)

    Article  ADS  Google Scholar 

  24. A.S. Fontes, A.C. Bento, M.L. Baesso, L.C.M. Miranda, Instrum. Sci. Technol. 34, 163 (2006)

    Article  Google Scholar 

  25. E. López-Romero, J. A. Balderas-López, in J. Phys. Conf. Ser. (IOP Publishing, 2017), p. 12089

  26. D.J. McClements, M.J.W. Povey, Ultrasonics 30, 383 (1992)

    Article  Google Scholar 

  27. L. Pogačnik, M. Franko, Biosens. Bioelectron. 18, 1 (2003)

    Article  Google Scholar 

  28. M. Franko, M. Šikovec, J. Kozar-Logar, D. Bicanic, in Anal. Sci. Proc. 11th Int. Conf. Photoacoust. Photothermal Phenom. (The Japan Society for Analytical Chemistry, 2002), pp. s515–s518

  29. J.A.P. Lima, M.S.O. Massunaga, H. Vargas, L.C.M. Miranda, Anal. Chem. 76, 114 (2004)

    Article  Google Scholar 

  30. M. Franko, C.D. Tran, Rev. Sci. Instrum. 67, 1 (1996)

    Article  ADS  Google Scholar 

  31. J.P. Gordon, R.C.C. Leite, R. Moore, S.P.S. Porto, J.R. Whinnery, J. Appl. Phys. 36, 3 (1965)

    Article  ADS  Google Scholar 

  32. C. Hu, J.R. Whinnery, Appl. Opt. 12, 72 (1973)

    Article  ADS  Google Scholar 

  33. J.H. Brannon, D. Magde, J. Phys. Chem. 82, 705 (1978)

    Article  Google Scholar 

  34. R. Sebastian, M.S. Swapna, V. Raj, M. Hari, S. Sankararaman, Mater. Res. Express 5, 075001 (2018)

    Article  ADS  Google Scholar 

  35. Z. Yan, D.B. Chrisey, J. Photochem. Photobiol. C Photochem. Rev. 13, 204 (2012)

    Article  Google Scholar 

  36. V. Raj, S. Soumya, M.S. Swapna, S. Sankararaman, Mater. Res. Express 5, 115504 (2018)

    Article  ADS  Google Scholar 

  37. A. Sarı, Energy Convers. Manag. 45, 2033 (2004)

    Article  Google Scholar 

  38. J. Sirison, A. Rirermwong, N. Tanwisuit, T. Meaksan, Br. Food J. 119, 2194 (2017)

    Article  Google Scholar 

  39. C. Vélez, M. Khayet, J.M.O. De Zárate, Appl. Energy 143, 383 (2015)

    Article  Google Scholar 

  40. M.N.R. Dimaano, T. Watanabe, Appl. Therm. Eng. 22, 365 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

Vimal Raj is grateful to the Council of Scientific and Industrial Research (India) for research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sankararaman.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, V., Swapna, M.S., Devi, H.V.S. et al. Nonradiative analysis of adulteration in coconut oil by thermal lens technique. Appl. Phys. B 125, 113 (2019). https://doi.org/10.1007/s00340-019-7228-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7228-6

Navigation