Skip to main content
Log in

Minimizing rf-induced excess micromotion of a trapped ion with the help of ultracold atoms

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on the compensation of excess micromotion due to parasitic rf-electric fields in a Paul trap. The parasitic rf-electric fields stem from the Paul trap drive but cause excess micromotion, e.g., due to imperfections in the setup of the Paul trap. We compensate these fields by applying rf-voltages of the same frequency, but adequate phases and amplitudes to Paul trap electrodes. The magnitude of micromotion is probed by studying elastic collision rates of the trapped ion with a gas of ultracold neutral atoms. Furthermore, we demonstrate that also reactive collisions can be used to quantify micromotion. We achieve compensation efficiencies of about 1 \(\,\text {Vm}^{-1}\), which is comparable to other conventional methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. In a perfectly aligned linear Paul trap with vanishing rf-potentials on the endcaps such a symmetric rf-drive leads to a vanishing axial micromotion on the trap axis. We note that in our previous work [19] we used an asymmetric trap drive.

  2. Measurements of the electrode voltages indicate, however, that the voltage amplitude \(V_0\) for the electrode pair (e1, e2) and the pair (e3, e4) are not equal but \(160\,\text {V}\) and \(143\,\text {V}\), respectively. Therefore, a cancellation of micromotion along the axial direction might be compromised. A simulation of the electrical fields for our setup can be found in [23].

  3. We note that besides applying ac-voltages to compensation electrodes, also alternative compensation methods could be used. For example, phase delays can be implemented by adjusting cable lengths or by using additional capacitances similarly as in [24].

  4. This trap does not have to exhibit perfect rotational symmetry.

  5. We restrict the discussion to the quasi-static regime where dynamical coupling of \(\boldsymbol{\mathcal{E}}\)- and \(\boldsymbol{\mathcal{B}}\)-fields (e.g., induction) can be neglected.

References

  1. H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008). https://doi.org/10.1016/j.physrep.2008.09.003

    Article  ADS  MathSciNet  Google Scholar 

  2. A. Bermudez, P. Schindler, T. Monz, R. Blatt, M. Müller, New J. Phys. 19, 113038 (2017). https://doi.org/10.1088/1367-2630/aa86eb

    Article  ADS  Google Scholar 

  3. M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009). https://doi.org/10.1088/0953-4075/42/15/154009

    Article  ADS  Google Scholar 

  4. D.J. Wineland, W.M. Itano, J.C. Bergquist, R.G. Hulet, Phys. Rev. A 36, 2220 (1987). https://doi.org/10.1103/PhysRevA.36.2220

    Article  ADS  Google Scholar 

  5. A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, K.S.E. Eikema, Phys. Rev. A 78, 032511 (2008). https://doi.org/10.1103/PhysRevA.78.032511

    Article  ADS  Google Scholar 

  6. A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015). https://doi.org/10.1103/RevModPhys.87.637

    Article  ADS  Google Scholar 

  7. M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek and P. S.Julienne, arXiv:1708.07832 (2017)

  8. A. Härter, J. Hecker Denschlag, Contemp. Phys. 55, 33 (2014). https://doi.org/10.1080/00107514.2013.854618

    Article  Google Scholar 

  9. D. Zhang and S. Willitsch, Chap. 10 in: Cold chemistry: molecular scattering and reactivity near absolute zero (edited by O. Dulieu and A. Osterwalder), RSC Publishing (2017). https://doi.org/10.1039/9781782626800

    Google Scholar 

  10. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998). https://doi.org/10.1063/1.367318

    Article  ADS  Google Scholar 

  11. D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010). https://doi.org/10.1088/1367-2630/12/5/053026

    Article  ADS  Google Scholar 

  12. B.L. Chuah, N.C. Lewty, R. Cazan, M.D. Barret, Opt. Express 21, 10632 (2013). https://doi.org/10.1364/OE.21.010632

    Article  ADS  Google Scholar 

  13. T.F. Gloger, P. Kaufmann, D. Kaufmann, M.T. Baig, T. Collath, M. Johanning, C. Wunderlich, Phys. Rev. A 92, 043421 (2015). https://doi.org/10.1103/PhysRevA.92.043421

    Article  ADS  Google Scholar 

  14. U. Tanaka, K. Masuda, Y. Akimoto, K. Koda, Y. Ibaraki, S. Urabe, Appl. Phys. B 107, 907 (2012). https://doi.org/10.1007/s00340-011-4762-2

    Article  ADS  Google Scholar 

  15. S. Narayanan, N. Daniilidis, S.A. Möller, R. Clark, F. Ziesel, K. Singer, F. Schmidt-Kaler, H. Häffner, J. Appl. Phys. 110, 114909 (2011). https://doi.org/10.1063/1.3665647

    Article  ADS  Google Scholar 

  16. J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015). https://doi.org/10.1063/1.4930037

    Article  ADS  Google Scholar 

  17. Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, M. Pinkas, Y. Dallal, R. Ozeri, J. Mod. Opt. 65, 501 (2017). https://doi.org/10.1080/09500340.2017.1397217

    Article  ADS  Google Scholar 

  18. T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, Nat. Commun. 5, 5587 (2014). https://doi.org/10.1038/ncomms6587

    Article  ADS  Google Scholar 

  19. A. Härter, A. Krükow, A. Brunner, J. Hecker Denschlag, Appl. Phys. Lett. 102, 221115 (2013). https://doi.org/10.1063/1.4809578

    Article  ADS  Google Scholar 

  20. Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, Y. Dallal, R. Ozeri, Phys. Rev. Lett. 117, 243401 (2016). https://doi.org/10.1103/PhysRevLett.117.243401

    Article  ADS  Google Scholar 

  21. S. Schmid, A. Härter, A. Frisch, S. Hoinka, J. Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012). https://doi.org/10.1063/1.4718356

    Article  ADS  Google Scholar 

  22. A. Härter, Two-body and three-body dynamics in atom-ion experiments. Ph.D. thesis, Universität Ulm (2013)

  23. A. Brunner, Excess Micromotion in Atom-Ionen Experimenten. Diploma thesis, Universität Ulm (2012)

  24. P.F. Herskind, A. Dantan, M. Albert, J.P. Marler, M. Drewsen, J. Phys. B: At. Mol. Opt. Phys. 42, 154008 (2009). https://doi.org/10.1088/0953-4075/42/15/154008

    Article  ADS  Google Scholar 

  25. M. Cetina, A.T. Grier, V. Vuletić, Phys. Rev. Lett. 109, 253201 (2012). https://doi.org/10.1103/PhysRevLett.109.253201

    Article  ADS  Google Scholar 

  26. H.A. Fürst, N.V. Ewald, T. Secker, J. Joger, T. Feldker, R. Gerritsma, J. Phys. B: At. Mol. Opt. Phys. 51, 195001 (2018). https://doi.org/10.1088/1361-6455/aadd7d

    Article  ADS  Google Scholar 

  27. L.H. Nguyên, A. Kalev, M.D. Barrett, B.-G. Englert, Phys. Rev. A 85, 052718 (2012). https://doi.org/10.1103/PhysRevA.85.052718

    Article  ADS  Google Scholar 

  28. B. Höltkemeier, P. Weckesser, H. López-Carrera, M. Weidemüller, Phys. Rev. Lett. 116, 233003 (2016). https://doi.org/10.1103/PhysRevLett.116.233003

    Article  ADS  Google Scholar 

  29. C. Zipkes, L. Ratschbacher, C. Sias, M. Köhl, New J. Phys. 13, 053020 (2011). https://doi.org/10.1088/1367-2630/13/5/053020

    Article  ADS  Google Scholar 

  30. S. Haze, M. Sasakawa, R. Saito, R. Nakai, T. Mukaiyama, Phys. Rev. Lett. 120, 043401 (2018). https://doi.org/10.1103/PhysRevLett.120.043401

    Article  ADS  Google Scholar 

  31. K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012). https://doi.org/10.1038/ncomms2131

    Article  ADS  Google Scholar 

  32. S. Dutta, R. Sawant, S.A. Rangwala, Phys. Rev. Lett. 118, 113401 (2017). https://doi.org/10.1103/PhysRevLett.118.113401

    Article  ADS  Google Scholar 

  33. I. Rouse, S. Willitsch, Phys. Rev. A 97, 042712 (2018)

    Article  ADS  Google Scholar 

  34. A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, J. Pérez-Ríos, C.H. Greene, Phys. Rev. Lett. 116, 193201 (2016). https://doi.org/10.1103/PhysRevLett.116.193201

    Article  ADS  Google Scholar 

  35. A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, Phys. Rev. A 94, 030701(R) (2016). https://doi.org/10.1103/PhysRevA.94.030701

    Article  ADS  Google Scholar 

  36. R. Côté, A. Dalgarno, Phys. Rev. A 62, 012709 (2000). https://doi.org/10.1103/PhysRevA.62.012709

    Article  ADS  Google Scholar 

  37. M.D. Gregoire, I. Hromada, W.F. Holmgren, R. Trubko, A.D. Cronin, Phys. Rev. A 92, 052513 (2015). https://doi.org/10.1103/PhysRevA.92.052513

    Article  ADS  Google Scholar 

  38. H. da Silva Jr, M. Raoult, M. Aymar, O. Dulieu, New J. Phys. 17, 045015 (2015). https://doi.org/10.1088/1367-2630/17/4/045015

    Article  Google Scholar 

  39. T. Secker, N. Ewald, J. Joger, H. Fürst, T. Feldker, R. Gerritsma, Phys. Rev. Lett. 118, 263201 (2017). https://doi.org/10.1103/PhysRevLett.118.263201

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within SFB/TRR21 and grant DE 510/2-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hecker Denschlag.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some general considerations on compensating excess micromotion

Appendix: Some general considerations on compensating excess micromotion

Here, we discuss in a very general way excess micromotion in a Paul trapFootnote 4. The motion of a confined ion is determined by the exposure to constant and rf-electrical fieldsFootnote 5. Concretely, we consider the three electrical fields \(\boldsymbol{\mathcal{E}}_c, \boldsymbol{\mathcal{E}}_{\cos }, \boldsymbol{\mathcal{E}}_{\sin }\), characteristic for a Paul trap. \(\boldsymbol{\mathcal{E}}_c (\mathbf {r})\) is time-independent, while \(\boldsymbol{\mathcal{E}}_{\cos }(\mathbf {r}) \propto \cos (\varOmega t)\) and \(\boldsymbol{\mathcal{E}}_{\sin }(\mathbf {r}) \propto \sin (\varOmega t)\) are quadrature components of the rf-field. The electrical fields \(\boldsymbol{\mathcal{E}}_c,\) \(\boldsymbol{\mathcal{E}}_{\mathrm{cos} }, \boldsymbol{\mathcal{E}}_{\mathrm{sin} }\) can each be Taylor expanded around the trap center position \(\mathbf {r}_0\). For each expansion the first term is a homogeneous offset field and the second term is a quadrupole field, followed by higher multipole terms such as the octupole field. In the Paul trap it is the quadrupole field which is used for trapping. For excess micromotion to vanish at \(\mathbf {r}_0\), we need \(\boldsymbol{\mathcal{E}}_c (\mathbf {r}_0) = \boldsymbol{\mathcal{E}}_{\mathrm{cos} }(\mathbf {r}_0) = \boldsymbol{\mathcal{E}}_{\mathrm{sin} } (\mathbf {r}_0) = 0\), which is equivalent to the vanishing of the respective offset field terms of the Taylor expansions. The remaining quadrupole fields at location \(\mathbf {r}\) in the direct vicinity of \(\mathbf {r}_0\) will generally dominate over the higher multipole fields, as long as \(\mathbf {r}- \mathbf {r}_0\) is much smaller than the distance to any of the trap electrodes. The total quadrupole field \(\boldsymbol{\mathcal{E}}_\text {qp}(\mathbf {r})\) (i.e., the sum of the three quadrupole fields) is fully determined by the second derivatives of the corresponding electrostatic potential \(\phi \), i.e., \(\boldsymbol{\mathcal{E}}_\text {qp}(\mathbf {r}) = H(\phi ) (\mathbf {r}-\mathbf {r}_0) \). Here, \(H(\phi )\) is the Hessian matrix of \(\phi \), i.e., \(H_{i,j}(\phi )={\partial ^2 \phi \over \partial x_i \partial x_j}\), where \(x_i, x_j \in \{ x, y, z \}\). Since \(H(\phi )\) is symmetric it can be diagonalized. In the corresponding coordinate system \(\{x', y', z'\}\) the electrical quadrupole field can be written as \(\boldsymbol{\mathcal{E}}_\text {qp} = a x' {\hat{x}}' + b y' {\hat{y}}' + c z' {\hat{z}}'\), similarly as in Eq. (1). Here, abc are time-dependent coefficients. Therefore, the motions of the ion along directions \({\hat{x}}', {\hat{y}}', {\hat{z}}'\) are decoupled and can be described by Mathieu equations. Thus, the main requirements for a Paul trap are fulfilled.

To cancel the offset field components of each of the \(\boldsymbol{\mathcal{E}}_c, \boldsymbol{\mathcal{E}}_{\mathrm{cos} }, \boldsymbol{\mathcal{E}}_{\mathrm{sin} }\) fields at location \(\mathbf {r}_0\) we can use three compensation electrodes to which we apply suitable dc- and rf-voltages. These electrodes produce electrical fields at \(\mathbf {r}_0\) which are preferentially (but not necessarily) perpendicular to each other.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, A., Wolf, J., Krükow, A. et al. Minimizing rf-induced excess micromotion of a trapped ion with the help of ultracold atoms. Appl. Phys. B 125, 122 (2019). https://doi.org/10.1007/s00340-019-7223-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7223-y

Navigation