Skip to main content
Log in

Focusing light through scattering media by combining genetic and Gauss–Newton algorithms

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Owing to the highly heterogeneous distributions of the components of disordered materials, light transport in such media experiences multiple light scattering. Focusing light through strongly scattering media is a significant goal in optical communication and imaging. However, a very challenging problem in such a process is the precise optimization of input wavefront, which influences the intensity and signal-to-noise ratio of the focus. This work proposes combining a genetic algorithm with the Gauss–Newton method to address this problem. Using this combined algorithm, we can efficiently obtain the correct and precise input wavefront for light scattering focus. The accuracy and stability of our proposed algorithm are verified using both numerical simulation and experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Wang, J. Wei, Y. Fan, Chalcogenide phase-change thin films used as grayscale photolithography materials. Opt. Express 22, 4973–4984 (2014)

    Article  ADS  Google Scholar 

  2. D. Loterie, S.A. Goorden, D. Psaltis, C. Moser, Confocal microscopy through a multimode fiber using optical correlation. Opt. Lett. 40, 5754–5757 (2015)

    Article  ADS  Google Scholar 

  3. S. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Image transmission through an opaque material. Nat. Commun. 1, 81 (2010)

    Article  ADS  Google Scholar 

  4. I.M. Vellekoop, A.P. Mosk, Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007)

    Article  ADS  Google Scholar 

  5. L. Fang, X. Zhang, H. Zuo, L. Pang, Focusing light through random scattering media by four-element division algorithm. Opt. Commun. 407, 301–310 (2018)

    Article  ADS  Google Scholar 

  6. L. Fang, H. Zuo, L. Pang, Z. Yang, X. Zhang, J. Zhu, Image reconstruction through thin scattering media by simulated annealing algorithm. Opt. Lasers Eng. 106, 105–110 (2018)

    Article  Google Scholar 

  7. L. Fang, H. Zuo, Z. Yang, X. Zhang, J. Du, L. Pang, Binary wavefront optimization using a simulated annealing algorithm. Appl. Opt. 57, 1744–1751 (2018)

    Article  ADS  Google Scholar 

  8. J. Yoon, K. Lee, J. Park, Y. Park, Measuring optical transmission matrices by wavefront shaping. Opt. Express 23, 10158–10167 (2015)

    Article  ADS  Google Scholar 

  9. H. Yu, J. Park, K. Lee, J. Yoon, K. Kim, S. Lee, Y. Park, Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015)

    Article  ADS  Google Scholar 

  10. S.M. Popoff, G. Lerosey, R. Carminati, M. Fink, A.C. Boccara, S. Gigan, Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010)

    Article  ADS  Google Scholar 

  11. S.M. Popoff, G. Lerosey, M. Fink, A.C. Boccara, S. Gigan, Controlling light through optical disordered media: transmission matrix approach. N. J. Phys. 13, 1–9 (2011)

    Article  Google Scholar 

  12. D.B. Conkey, A.N. Brown, A.M. Caravacaaguirre, R. Piestun, Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express 20, 4840–4849 (2012)

    Article  ADS  Google Scholar 

  13. I.M. Vellekoop, A.P. Mosk, Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101(12), 120601 (2008)

    Article  ADS  Google Scholar 

  14. C.L. Hsieh, Y. Pu, R. Grange, D. Psaltis, Digital phase conjugation of second harmonic radiation emitted by nanoparticles in turbid media. Opt. Express 18, 12283–12290 (2010)

    Article  ADS  Google Scholar 

  15. I.M. Vellekoop, M. Cui, C. Yang, Digital optical phase conjugation of fluorescence in turbid tissue. Appl. Phys. Lett. 101, 081108 (2012)

    Article  ADS  Google Scholar 

  16. Z. Yaqoob, D. Psaltis, M.S. Feld, C. Yang, Optical phase conjugation for turbidity suppression in biological samples. Nat. Photon. 2(2), 110–115 (2008)

    Article  ADS  Google Scholar 

For transmission matrix approaches:

  1. A. Drémeau, A. Liutkus, D. Martina, O. Katz, C. Schülke, F. Krzakala, S. Gigan, L. Daudet, Reference-less measurement of the transmission matrix of a highly scattering material using a DMD and phase retrieval techniques. Opt. Express 23, 11898 (2015)

    Article  ADS  Google Scholar 

  2. M. Kim, W. Choi, Y. Choi, C. Yoon, W. Choi, Transmission matrix of a scattering medium and its applications in biophotonics. Opt. Express 23, 12648 (2015)

    Article  ADS  Google Scholar 

  3. J. Xu, H. Ruan, Y. Liu, H. Zhou, C. Yang, Focusing light through scattering media by transmission matrix inversion. Opt. Express 25, 27234 (2017)

    Article  ADS  Google Scholar 

  4. D.H. Kim, A. Abraham, A hybrid genetic algorithm and bacterial foraging approach for global optimization and robust tuning of PID controller with disturbance rejection. Inf. Sci. Int. J. 177, 3918–3937 (2007)

    Google Scholar 

  5. M. Qian, Z. Haoyi, W. Yanling, L. Liang, C. Wenjin, H. Xiaoxue, L. Shirong, Analysis of charge-exchange spectroscopy data by combining genetic and Gauss–Newton algorithms. J. Quant. Spectrosc. Radiat. Transfer 166, 74–80 (2015)

    Article  ADS  Google Scholar 

  6. X.X. Shao, X.J. Dai, X.Y. He, Noise robustness and parallel computation of the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt. Lasers Eng. 71, 9–19 (2015)

    Article  Google Scholar 

  7. Y. Su, Q. Zhang, X. Xu, Z. Gao, S. Wu, Interpolation bias for the inverse compositional Gauss–Newton algorithm in digital image correlation. Opt. Lasers Eng. 100, 267–278 (2018)

    Article  Google Scholar 

  8. J. Goodman, Speckle Phenomena in Optics, vol. 2 (Roberts & Company, Englewood, 2007)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 61377054 and 61675140) and Graduate Student’s Research and Innovation Fund of Sichuan University (Grant no. 2018YJSY005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyi Zuo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, L., Zuo, H., Xu, Y. et al. Focusing light through scattering media by combining genetic and Gauss–Newton algorithms. Appl. Phys. B 125, 94 (2019). https://doi.org/10.1007/s00340-019-7205-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7205-0

Navigation