Skip to main content
Log in

The oriented bilateral filtering method for removal of speckle noise in electronic speckle pattern interferometry fringes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In optical interferometry methods, a challenging problem is how to preserve the edges of all fringes perfectly whilst reducing speckle noise effectively. Directivity is an important characteristic of optical interferometry fringes, and it plays an extremely important role in directing the filtering process. Bilateral filtering is a well-known filtering method for edge-preserving in image processing. In this paper, we propose an oriented bilateral filtering method with special application for optical interferometry fringes by incorporating a directional mask to original bilateral filtering method. We test our oriented bilateral filtering method by applying it to four computer-simulated and one experimentally obtained ESPI fringe patterns, respectively, and compare it with the original bilateral filtering method and the tangent least-squares fitting filtering method. The experimental results demonstrate that the proposed method performs impressively in speckle reduction and fringe edge preservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S. Wang, M. Lu, M. Bilgeri et al., Opt. Express 26(7), 8744 (2018)

    Article  ADS  Google Scholar 

  2. V. Pagliarulo, F. Farroni, P. Ferraro et al., Opt. Lasers Eng. 104, 71 (2017)

    Article  Google Scholar 

  3. A. Shulev, I. Russev, C. Sainov, Proc. SPIE Int. Soc. Opt. Eng. 4933, 323 (2003)

    ADS  Google Scholar 

  4. Q. Kemao, Appl. Opt. 43, 2695 (2004)

    Article  ADS  Google Scholar 

  5. C. Li, C. Tang, H. Yan et al., Appl. Opt. 50, 4903 (2011)

    Article  ADS  Google Scholar 

  6. C. Shakher, R. Kumar, Opt. Eng. 41, 176 (2002)

    Article  ADS  Google Scholar 

  7. H. Kaufmann, E. Galizzi, Opt. Eng. 35(1), 9 (1996)

    Article  ADS  Google Scholar 

  8. S. Mirza, R. Kumar, C. Shakher, Opt. Eng. 44(4), 045603 (2005)

    Article  ADS  Google Scholar 

  9. A. Sharma, G. Sheoran, A. Jaffery, Opt. Lasers Eng. 46(1), 42 (2008)

    Article  Google Scholar 

  10. C. Hong, H. Ryu, H. Lim, Opt. Lett. 20, 931 (1995)

    Article  ADS  Google Scholar 

  11. C. Quan, C.J. Tay, F. Yang et al., Appl. Opt. 44, 4814 (2005)

    Article  ADS  Google Scholar 

  12. C. Tang, F. Zhang, H. Yan et al., Opt. Commun. 260, 91 (2006)

    Article  ADS  Google Scholar 

  13. L. Cheng, C. Tang, S. Yan et al., Opt. Commun. 284, 5549 (2011)

    Article  ADS  Google Scholar 

  14. C. Tang, F. Zhang, B. Li et al., Appl. Opt. 45, 7392 (2006)

    Article  ADS  Google Scholar 

  15. Y. Li, S. Qu, X. Chen et al., Opt. Lett. 35, 3526 (2010)

    Article  ADS  Google Scholar 

  16. X. Zhou, T. Yang, H. Zou et al., Opt. Lett. 37(11), 1904 (2012)

    Article  ADS  Google Scholar 

  17. X. Zhu, C. Tang, H. Ren et al., Opt. Laser Technol. 63(6), 125 (2014)

    Article  ADS  Google Scholar 

  18. R. Kumar, C. Shakher, Opt. Lasers Eng. 42, 585 (2004)

    Article  Google Scholar 

  19. D. Jia, T. Xu, H. Zhang et al., Opt. Eng. 54(4), 043105 (2015)

    Article  Google Scholar 

  20. C. Tang, L. Wang, H. Yan et al., Opt. Lasers Eng. 50, 1036 (2012)

    Article  Google Scholar 

  21. C. Tang, L. Wang, H. Yan, Appl. Opt. 51, 4916 (2012)

    Article  ADS  Google Scholar 

  22. Q. Yu, X. Sun, X. Liu et al., Appl. Opt. 41, 2650 (2002)

    Article  ADS  Google Scholar 

  23. D. Jia, C. Ma, L. Wu et al., Acta Optica Sinica. 32, 0311001 (2012)

    Article  Google Scholar 

  24. C. Tang, W. Wang, H. Yan et al., Appl. Opt. 46, 2907 (2007)

    Article  ADS  Google Scholar 

  25. C. Tang, T. Gao, S. Yan et al., Opt. Express 18, 8942 (2010)

    Article  ADS  Google Scholar 

  26. V. Jesús, A. Juan, D. Ismael, Opt. Lett. 34, 1741 (2009)

    Article  Google Scholar 

  27. C. Tang, L. Han, H. Ren et al., Opt. Lett. 33, 2179 (2008)

    Article  ADS  Google Scholar 

  28. H. Wang, Q. Kemao, W. Gao et al., Opt. Lett. 34, 1141 (2009)

    Article  ADS  Google Scholar 

  29. C. Tang, L. Han, H. Ren et al., Opt. Express 17, 5606 (2009)

    Article  ADS  Google Scholar 

  30. C. Tomasi, R. Manduchi, in Bilateral filtering for gray and color images. Sixth International Conference on Computer Vision (IEEE Cat.No.98CH36271) (1998), pp. 839–846

  31. S. Paris, in A gentle introduction to bilateral filtering and its applications. ACM SIGGRAPH (2007), pp. 433–645

  32. K. Chaudhury, S. Dabhade, IEEE Trans. Image Process. 25, 2519 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  33. K. Sugimoto, S. Kamata, IEEE Trans. Image Pro. 24, 3357 (2015)

    Article  ADS  Google Scholar 

  34. A. Gabiger-Rose, M. Kube, R. Weigel et al., IEEE Trans. Ind. Electron. 61(8), 4093 (2014)

    Article  Google Scholar 

  35. K. Yang, Y. Zhao, N. Deng, Optik Int. J. Light Electron. Opt. 126(6), 592 (2015)

    Article  Google Scholar 

  36. R. Xu, S. Pattanaik, IEEE Comput. Graph. Appl. 25(2), 31 (2005)

    Article  Google Scholar 

  37. B. Weiss, ACM Trans. Graph. 25, 519 (2006)

    Article  Google Scholar 

  38. Z. Zhou, J. Cao, H. Wang, et al, in Image denoising algorithm via doubly bilateral filtering. International Conference on Information Engineering and Computer Science (IEEE, 2009), pp 1–4

  39. H. Chang, W. Chu, in Double Bilateral Filtering for Image Noise Removal. Wri World Congress on Computer Science and Information Engineering (IEEE Computer Society, 2009), pp 451–455

  40. F. Durand, J. Dorsey, ACM Trans. Graph. 21, 257 (2002)

    Google Scholar 

  41. K. Chaudhury, D. Sage, IEEE Trans. Image Process. 20, 3376 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  42. B.K. Gunturk, IEEE Trans. Image Process. 20, 2690 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  43. S. Pan, X. An, H. He, Math. Probl. Eng. 2014, 445 (2014)

    ADS  Google Scholar 

  44. L. Wang, G. Leedham, S. Cho, Pattern Recogn. 41, 920 (2008)

    Article  Google Scholar 

  45. http://cgm.cs.mcgill.ca/~godfried/teaching/projects97/azar/skeleton.html. Accessed 20 July 2018

  46. C. Tang, Z. Wang, L. Wang et al., Appl. Opt. 49, 554 (2010)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NNSFC) (Grant no. 11772081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Tang, C., Xu, M. et al. The oriented bilateral filtering method for removal of speckle noise in electronic speckle pattern interferometry fringes. Appl. Phys. B 125, 121 (2019). https://doi.org/10.1007/s00340-019-7196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7196-x

Navigation