Skip to main content
Log in

Possibility of estimating high-intensity-laser plasma parameters by modelling spectral line profiles in spatially and time-integrated X-ray emission

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We address an issue of measuring the parameters of an envolving laser-produced plasma commonly observable in high-energy density physics experiments. Available diagnostic equipment does not provide enough temporal, and often spatial, resolution to distinguish the signal coming from the region and timeframe of outmost interest, where deposited energy density reaches its maximum. In this paper, we propose and describe an approach that makes it possible to estimate the plasma parameters existing at the time of the main laser pulse arrival, as well as on later stages of plasma expansion. It is based on the analysis of X-ray spectral line profiles in multicharged ion spectra registered in simple time and spatially integrated mode. As an example, specific calculations were made for Lyβ line of Al XIII and Heβ line of Al XII and can be used to diagnose aluminum plasmas with an electron temperature of 400–1000 eV, assuming that expanding plasma was homogeneous at every moment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.P. Ridgers, C.S. Brady, R. Duclous, J.G. Kirk, K. Bennett, T.D. Arber, A.P.L. Robinson, A.R. Bell, Phys. Rev. Lett. 108, 165006 (2012)

    Article  ADS  Google Scholar 

  2. T. Nakamura, J.K. Koga, T.Z. Esirkepov, M. Kando, G. Korn, S.V. Bulanov, Phys. Rev. Lett. 108, 195001 (2012)

    Article  ADS  Google Scholar 

  3. A. Zhidkov, J. Koga, A. Sasaki, M. Uesaka, Phys. Rev. Lett. 88, 1850021 (2002)

    Article  Google Scholar 

  4. K.U. Akli, S.B. Hansen, A.J. Kemp, R.R. Freeman, F.N. Beg, D.C. Clark, S.D. Chen, D. Hey, S.P. Hatchett, K. Highbarger, E. Giraldez, J.S. Green, G. Gregori, K.L. Lancaster, T. Ma, A.J. MacKinnon, P. Norreys, N. Patel, J. Pasley, C. Shearer, R.B. Stephens, C. Stoeckl, M. Storm, W. Theobald, L.D. Van Woerkom, R. Weber, M.H. Key, Phys. Rev. Lett. 100, 165002 (2008)

    Article  ADS  Google Scholar 

  5. V.E. Fortov, High-Power Lasers in High-Energy-Density Physics (Springer Series in Materials Science, Cham, 2016)

    Book  Google Scholar 

  6. S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013)

    Article  ADS  Google Scholar 

  7. S.A. Pikuz, A.Y. Faenov, I.Y. Skobelev, V.E. Fortov, Uspekhi Fiz. Nauk 184, 702 (2014)

    Article  Google Scholar 

  8. I.A. Andriyash, R. Lehe, A. Lifschitz, C. Thaury, J.M. Rax, K. Krushelnick, V. Malka, Nat. Commun. 5, 1 (2014)

    Article  Google Scholar 

  9. E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)

    Article  ADS  Google Scholar 

  10. A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)

    Article  ADS  Google Scholar 

  11. H.W. Powell, M. King, R.J. Gray, D.A. MacLellan, B. Gonzalez-Izquierdo, L.C. Stockhausen, G. Hicks, N.P. Dover, D.R. Rusby, D.C. Carroll, H. Padda, R. Torres, S. Kar, R.J. Clarke, I.O. Musgrave, Z. Najmudin, M. Borghesi, D. Neely, P. McKenna, New J. Phys. 17, 103033 (2015)

    Article  ADS  Google Scholar 

  12. R. Betti, O.A. Hurricane, Nat. Phys. 12, 435 (2016)

    Article  Google Scholar 

  13. J.D. Lindl, P. Amendt, R.L. Berger, S.G. Glendinning, S.H. Glenzer, S.W. Haan, R.L. Kauffman, O.L. Landen, L.J. Suter, Phys. Plasmas 11, 339 (2003)

    Article  ADS  Google Scholar 

  14. C.J. Cerjan, L. Bernstein, L.B. Hopkins, R.M. Bionta, D.L. Bleuel, J.A. Caggiano, W.S. Cassata, C.R. Brune, J. Frenje, M. Gatu-Johnson, N. Gharibyan, G. Grim, C. Hagmann, A. Hamza, R. Hatarik, E.P. Hartouni, E.A. Henry, H. Herrmann, N. Izumi, D.H. Kalantar, H.K. Y., Y. Kim, A. Kritcher, Y.A. Litvinov, F. Merrill, K. Moody, P. Neumayer, A. Ratkiewicz, G.H. Rinderknecht, D. Sayre, D. Shaughnessy, B. Spears, W. Stoeffl, R. Tommasini, C. Yeamans, C. Velsko, M. Wiescher, M. Couder, A. Zylstra, D. Schneider, J. Phys. G Nucl. Part. Phys. Accept. 45(1), 033003 (2018)

    Article  ADS  Google Scholar 

  15. J. Colgan, J. Abdallah, A.Y. Faenov, S.A. Pikuz, E. Wagenaars, N. Booth, O. Culfa, R.J. Dance, R.G. Evans, R.J. Gray, T. Kaempfer, K.L. Lancaster, P. McKenna, A.L. Rossall, I.Y. Skobelev, K.S. Schulze, I. Uschmann, A.G. Zhidkov, N.C. Woolsey, Phys. Rev. Lett. 110, 125001 (2013)

    Article  ADS  Google Scholar 

  16. B. Gonzalez-Izquierdo, R. Capdessus, M. King, R. Gray, R. Wilson, R. Dance, J. McCreadie, N. Butler, S. Hawkes, J. Green, N. Booth, M. Borghesi, D. Neely, P. McKenna, Appl. Sci. 8, 336 (2018)

    Article  Google Scholar 

  17. C. Scullion, D. Doria, L. Romagnani, A. Sgattoni, K. Naughton, D.R. Symes, P. McKenna, A. MacChi, M. Zepf, S. Kar, M. Borghesi, Phys. Rev. Lett. 119, 054801 (2017)

    Article  ADS  Google Scholar 

  18. A. Schönlein, G. Boutoux, S. Pikuz, L. Antonelli, D. Batani, A. Debayle, A. Franz, L. Giuffrida, J.J. Honrubia, J. Jacoby, D. Khaghani, P. Neumayer, O.N. Rosmej, T. Sakaki, J.J. Santos, A. Sauteray, EPL 114, 45002 (2016)

    Article  ADS  Google Scholar 

  19. E. Oks, E. Dalimier, A.Y. Faenov, P. Angelo, S.A. Pikuz, T.A. Pikuz, I.Y. Skobelev, S.N. Ryazanzev, P. Durey, L. Doehl, D. Farley, C. Baird, K.L. Lancaster, C.D. Murphy, N. Booth, C. Spindloe, P. McKenna, N. Neumann, M. Roth, R. Kodama, N. Woolsey, J. Phys. B At. Mol. Opt. Phys. 50, 245006 (2017)

    Article  ADS  Google Scholar 

  20. Y.B. Zeldovich, Y.P. Raizer, Physics of Shock-Waves and High-Temperature Hydrodynamic Phenomena, Academic P (Dover Pubn Inc, New York and London, 2002) (illustrated edition)

    Google Scholar 

  21. H.K. Chung, M.H. Chen, W.L. Morgan, Y. Ralchenko, R.W. Lee, High Energy Density Phys. 1(1), 3–12 (2005)

    Article  ADS  Google Scholar 

  22. V.A. Boiko, A.Y. Faenov, S.A. Pikuz, U.I. Safranova, Mon. Not. R Astron. Soc. 181, 107 (1977)

    Article  ADS  Google Scholar 

  23. A.I. Faenov, T.A. Pikuz, I.Yu. Skobelev, A.I. Magunov, V.P. Efremov, M. Servol, F. Quéré, M. Bougeard, P. Monot, P. Martin, M. Francucci, G. Petrocelli, P. Audebert, Lett. JETP 80, 730 (2004)

    Article  ADS  Google Scholar 

  24. H.R. Griem, Spectral Line Broadening by Plasmas (Academic Press, New York and London, 1974)

    Google Scholar 

Download references

Acknowledgements

The work was done under financial support of Russian Science Foundation (Grant #17-72-20272). The work of A.S. Martynenko was also supported in part by Competitiveness program of NRNU MEPhI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Pikuz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martynenko, A.S., Skobelev, I.Y. & Pikuz, S.A. Possibility of estimating high-intensity-laser plasma parameters by modelling spectral line profiles in spatially and time-integrated X-ray emission. Appl. Phys. B 125, 31 (2019). https://doi.org/10.1007/s00340-019-7149-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7149-4

Navigation