Skip to main content
Log in

Criterion of globally complete chaos synchronization for diverse three-node VCSEL networks with coupling delays

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

For diverse three node vertical-cavity surface-emitting laser (VCSEL) networks with uniform time-delayed coupling, we propose a new criterion of the globally complete chaos synchronization (GCCS) among all node lasers using the mater-stability function (MSF). Here, the MSF can be obtained by calculating the maximum Lyapunov exponent (MLE) and MLE is calculated from the modified master stability equation. Note that the outer-coupling matrixes have a nonzero row sum (nondiffusive coupling) and the inner-coupling is a function of the self-node and delay connection node. It is found that GCCS can be achieved for an arbitrarily given three-node VCSEL networks when two points determined by the constant row sum and two transversal eigenvalues fall into the region of stability where MLE is negative and the MLE as a function of the constant row sum and the eigenvalue associated to perturbations within the synchronization manifold is positive. Based on the theoretical criterion and synchronization error theory, we further explore the synchronization properties in three-node VCSEL networks with the ring topology and that with the bus topology. As a result, the theoretical criterion is in excellent agreement with our numerical results, which indicate that the theoretical criterion is valid and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.Z. Liu, Y.Y. Xie, Y.C. Ye, J.P. Zhang, S.J. Wang, Y. Liu, G.F. Pan, J.L. Zhang, IEEE Photon J. 9(1), 7900512 (2017)

    Google Scholar 

  2. J.G. Wu, Z.M. Wu, X. Tang, L. Fan, W. Deng, G.Q. Xia, I.E.E.E. Photon, Technol. Lett. 25(6), 587–590 (2013)

    Article  Google Scholar 

  3. T. Deng, G.Q. Xia, Z.M. Wu, Nonlinear Dyn. 76(1), 399–407 (2014)

    Article  Google Scholar 

  4. J.X. Ke, L.L. Yi, G.Q. Xia, W.S. Hu, Opt. Lett. 43(6), 1323–1326 (2018)

    Article  ADS  Google Scholar 

  5. A.A. Koronovskii, O.I. Moskalenko, A.E. Hramov, Physics 52(12), 1213–1238 (2009)

    Google Scholar 

  6. J.G. Wu, Z.M. Wu, G.Q. Xia, T. Deng, X.D. Lin, X. Tang, G.Y. Feng, I.E.E.E. Photon, Technol. Lett. 23(24), 1854–1856 (2011)

    Article  Google Scholar 

  7. N. Jiang, W. Pan, B. Luo, S. Xiang, L. Yang, I.E.E.E. Photon, Technol. Lett. 24(13), 1094–1096 (2012)

    Article  Google Scholar 

  8. E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaykovich, I. Kanter, Phys. Rev. E 73(2), 066214 (2006)

    Article  ADS  Google Scholar 

  9. M.W. Lee, J. Paul, C. Masoller, K.A. Shore, J. Opt. Soc. Am. B 23(5), 846–851 (2006)

    Article  ADS  Google Scholar 

  10. J.M. Buldú, M.C. Torrent, J. García-Ojalvo, J. Lightwave Technol. 25(6), 1549–1554 (2007)

    Article  ADS  Google Scholar 

  11. J. Kestler, W. Kinzel, I. Kanter, Phys. Rev. E 76(2), 035202 (2007)

    Article  ADS  Google Scholar 

  12. R. Vicente, I. Fischer, C.R. Mirasso, Phys. Rev. E 78(6), 066202 (2008)

    Article  ADS  Google Scholar 

  13. N. Jiang, W. Pan, L. Yan, B. Luo, W. Zhang, S. Xiang, L. Yang, D. Zheng, J. Lightwave Technol. 28(13), 1978–1986 (2010)

    Article  ADS  Google Scholar 

  14. Y. Aviad, I. Reidler, M. Zigzag, M. Rosenbluh, I. Kanter, Opt. Express 20(4), 4352–4359 (2012)

    Article  ADS  Google Scholar 

  15. S. Jeeva Sathya Theesar, M.R.K. Ariffin, S. Banerjee, Opt. Laser Technol. 54(54), 15–21 (2013)

    Article  ADS  Google Scholar 

  16. M.C. Soriano, J. García-Ojalvo, C.R. Mirasso, I. Fischer, Rev. Mod. Phys. 85(1), 421–470 (2013)

    Article  ADS  Google Scholar 

  17. L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 80(10), 2109–2112 (1998)

    Article  ADS  Google Scholar 

  18. M. Manju Shrii, D.V. Senthilkumar, J. Kurths, EPL 98(1), 285–304 (2012)

    Article  Google Scholar 

  19. D.G. Yang, C.Y. Hu, in Proceedings of IEEE Conference on Intelligent Control and Automation (2008), pp. 8216–8221

  20. V. Flunkert, S. Yanchuk, T. Dahms, E. Schöll, Phys. Rev. Lett. 105(25), 254101–254104 (2010)

    Article  ADS  Google Scholar 

  21. H.J. Wang, L. Chen, C. Qiu, H.B. Huang, G.X. Qi, EPL 101(6), 60002 (2013)

    Article  ADS  Google Scholar 

  22. O. DHuys, S. Zeeb, T. Jüngling, S. Heiligenthal, S. Yanchuk, W. Kinzel, EPL 103(1), 10013 (2013)

    Article  ADS  Google Scholar 

  23. W.C. Yang, Z.G. Huang, X.G. Wang, L. Huang, L. Yang, Y.C. Lai, New J. Phys. 17(2), 023055 (2015)

    Article  ADS  Google Scholar 

  24. V. Flunkert, E. Schöll, Esaim Proc. 39, 40–48 (2013)

    Article  Google Scholar 

  25. M. San Miguel, Q. Feng, J.V. Moloney, Phys. Rev. A 52(2), 1728–1739 (1995)

    Article  ADS  Google Scholar 

  26. A. Uchida, Optical Communication with Chaotic Lasers (Wiley, Weinheim, 2012)

    Book  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant No. 61475120), and the Major Projects of Basic Research and Applied Research for Natural Science in Guangdong province (Grant No. 2017KZDXM086).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Z. Zhong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, D.Z., Xiao, Z.Z. & Yang, G.Z. Criterion of globally complete chaos synchronization for diverse three-node VCSEL networks with coupling delays. Appl. Phys. B 125, 26 (2019). https://doi.org/10.1007/s00340-019-7141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7141-z

Navigation