Skip to main content
Log in

Measurement of the spatial magnetic field distribution in a single large spin-exchange relaxation-free vapor cell

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This article presents a method to determine the magnetic field distribution within the vapor cell of a spin-exchange relaxation-free (SERF) atomic magnetometer with a sensitivity of the order of 10 femtoTesla and a bandwidth of DC to 100 Hz, in the presence of an uncompensated ambient magnetic field of up to several nanoTesla. The method is based on the analysis of the atomic polarization in a multichannel pump–probe configuration, in which a spatially selective optical pumping enables to probe specific layers of the atomic vapor contained in a gas-buffered cell. An SERF magnetometer is inherently sensitive to one component of the magnetic field, orthogonal to the pump and probe laser beams. The sensor’s performance can be drastically degraded by the other uncompensated components of the magnetic field. Typically, SERF magnetometry requires very good magnetic shielding and active compensation of residual magnetic field to properly function; this is commonly achieved by applying a complex design of Helmholtz coils in a sophisticated compensation procedure. The method suggested in this article eliminates the influence of non-uniform residual magnetic fields on the accuracy of measurements without precise compensation of the interfering field components. This procedure is used to simplify the measurements of magnetic field distribution in a large vapor cell with required accuracy. This is critically important for precise multichannel magnetic field mapping used for localization of the magnetic dipole-field source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J.C. Allred, R.N. Lyman, T.W. Kornack, M.V. Romalis, High-sensitivity atomic magnetometer unaffected by spin-exchange relaxation. Phys. Rev. Lett. 89, 130801–130802 (2002)

    Article  ADS  Google Scholar 

  2. J.-H. Liu, D.-Y. Jing, L.-L. Wang, Y. Li, W. Quan, J.-C. Fang, W.-M. Liu, The polarization and the fundamental sensitivity of 39K (133Cs)-85Rb-4He hybrid optical pumping spin exchange relaxation free atomic magnetometers. Nat. Sci. Rep. 7:6776 (2017)

    Article  ADS  Google Scholar 

  3. J. Lu, Z. Qian, J. Fang, W. Quan, Effects of AC magnetic field on spin-exchange relaxation of atomic magnetometer. Appl. Phys. B 122, 59 (2016)

    Article  ADS  Google Scholar 

  4. A. Grosz, M.C. Haji-Sheikh, S.C. Mukhopadayay, High Sensitivity Magnetometers (Springer, New York, 2016), pp. 451–491

    Google Scholar 

  5. K. Wendel, O. Väisänen, J. Malmivuo, N.G. Gencer, B. Vanrumste, P. Durka, R. Magjarević, S. Supek, M.L. Pascu, H. Fontenelle, R.G. de Peralta Menendez, EEG/MEG source imaging: methods, challenges, and open issues. Comput. Intell. Neurosci. 2009, 656092 (2009)

    Article  Google Scholar 

  6. T. Hedrich, G. Pellegrino, E. Kobayashi, M. Lina, C. Grova, Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG. NeuroImage 157:531–544 (2017)

    Article  Google Scholar 

  7. A. Horsley, G.-X. Du, P. Treutlein, Widefield microwave imaging in alkali vapor cells with sub-100 µm resolution. N. J. Phys. 17, 112002 (2015)

    Article  Google Scholar 

  8. Y.J. Kim, I. Savukov, J.-H. Huang, P. Nath, Magnetic microscopic imaging with an optically pumped magnetometer and flux guides. Appl. Phys. Lett. 110, 043702 (2017)

    Article  ADS  Google Scholar 

  9. K. Nishi, Y. Ito, T. Kobayashi, High-sensitivity multi-channel probe beam detector towards MEG measurements of small animals with an optically pumped K-Rb hybrid magnetometer. Opt. Express 26(2), 1988–1996 (2018)

    Article  ADS  Google Scholar 

  10. A. Gusarov, A. Ben-Amar Baranga, D. Levron, R. Shuker, Accuracy enhancement of magnetic field distribution measurements within a large cell spin-exchange relaxation-free magnetometer. IOP Measure. Sci. Technol. 29, 045209 (2018)

    Google Scholar 

  11. Y.J. Kim, I. Savukov, Ultra-sensitive magnetic microscopy with an optically pumped magnetometer. Sci. Rep. 6, 24773 (2016)

    Article  ADS  Google Scholar 

  12. Y. Ito, D. Sato, K. Kamada, T. Kobayashi, Measurements of magnetic field distributions with an optically pumped K-Rb hybrid atomic magnetometer. IEEE Trans. Magn. 50, 4006903 (2014)

    Google Scholar 

  13. A. Gusarov, D. Levron, E. Paperno, R. Shuker, A. Ben-Amar Baranga, Three-dimensional magnetic field measurements in a single SERF atomic-magnetometer cell. IEEE Trans. Magn. 45, 4478 (2009)

    Article  ADS  Google Scholar 

  14. V. Dolgovskiy, I. Fescenko, N. Sekiguchi, S. Colombo, V. Lebedev, J. Zhang, A. Weis, A magnetic source imaging camera. Appl. Phys. Lett. 109, 023505 (2016)

    Article  ADS  Google Scholar 

  15. T. Wang et al., Application of spin-exchange relaxation-free magnetometry to the cosmic axion spin precession experiment. Phys. Dark Univ. 19, 27–35 (2018)

    Article  Google Scholar 

  16. H. Xia, A. Ben-Amar Baranga, D. Hoffman, M.V. Romalis, Magnetoencephalography with an atomic magnetometer. Appl. Phys. Lett. 89(21), 211104 (2006)

    Article  ADS  Google Scholar 

  17. E. Breschi, Z. Grujić, A. Weis, In situ calibration of magnetic field coils using free-induction decay of atomic alignment. Appl. Phys. B 115(1), 85–91 (2014)

    Article  ADS  Google Scholar 

  18. D. Budker, D.F. Jackson Kimball, Optical Magnetometry (Cambridge University Press, Cambridge, 2013)

    Book  Google Scholar 

  19. F. Bloch, Nuclear induction. Phys. Rev. 70, 460 (1946)

    Article  ADS  Google Scholar 

  20. S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R. Young, W. Happer, Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A58, 1412 (1998)

    Article  ADS  Google Scholar 

  21. M.P. Ledbetter, I.M. Savukov, V.M. Acosta, D. Budker, M.V. Romalis, Spin-exchange-relaxation-free magnetometry with Cs vapor. Phys. Rev. A 77, 033408 (2008)

    Article  ADS  Google Scholar 

  22. I. Savukov, Ultra-Sensitive Optical Atomic Magnetometers and Their Applications (INTECH Open Access Publisher, London, 2010)

    Book  Google Scholar 

  23. I.M. Savukov, S.J. Seltzer, M.V. Romalis, K.L. Sauer, Tunable atomic magnetometer for detection of radio-frequency magnetic fields. Phys. Rev. Lett. 95, 063004 (2005)

    Article  ADS  Google Scholar 

  24. V. Schultze, R. IJsselsteijn, H.-G. Meyer, Noise reduction in optically pumped magnetometer assemblies. Appl. Phys. B 100(4), 717–724 (2010)

    Article  ADS  Google Scholar 

  25. S.J. Seltzer. Developments in Alkali-Metal Atomic Magnetometry, Dissertation, Princeton University, 2008

  26. S.J. Seltzer, M.V. Romalis, High-temperature alkali vapor cells with antirelaxation surface coatings. J. Appl. Phys. 106, 114905 (2009)

    Article  ADS  Google Scholar 

  27. E. Paperno, A. Plotkin, Cylindrical induction coil to accurately imitate the ideal magnetic dipole. Sens. Actuat. A 112, 248–252 (2004)

    Article  Google Scholar 

  28. A. Gusarov, D. Levron, A. Ben-Amar Baranga, E. Paperno, R. Shuker, An all-optical scalar and vector spin-exchange relaxation-free magnetometer employing on–off pump modulation. J. Appl. Phys. 109, 07E507 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alexander Papkov from The Dead-Sea and Arava Science Center for the valuable practical discussions in the early stages of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gusarov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gusarov, A., Baranga, A.BA., Levron, D. et al. Measurement of the spatial magnetic field distribution in a single large spin-exchange relaxation-free vapor cell. Appl. Phys. B 125, 19 (2019). https://doi.org/10.1007/s00340-018-7130-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7130-7

Navigation