Skip to main content
Log in

A single-stage 1112 nm fiber amplifier with large gain for laser cooling of ytterbium

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We present a single-stage Yb fiber amplifier pumped at 1064 nm which amplifies a low-power (5 mW) signal from a commercial distributed feedback (DFB) fiber laser at 1112 nm to several hundred mW. Compared to conventional fiber amplifiers, which are typically pumped at shorter wavelength, the single-stage gain of the amplifier is increased to more than 20 dB and the ASE level is reduced by an order of magnitude. Frequency doubling in a PPLN waveguide produces light at 556 nm, which is used to capture Yb atoms in a magneto-optical trap on the 1S0\(\rightarrow\) 3P1 intercombination line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. T. Kuwamoto, K. Honda, Y. Takahashi, T. Yabuzaki, Magneto-optical trapping of yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999)

    Article  ADS  Google Scholar 

  2. A. Guttridge, S.A. Hopkins, S.L. Kemp, D. Boddy, R. Freytag, M.P.A. Jones, M.R. Tarbutt, E.A. Hinds, S.L. Cornish, Direct loading of a large Yb MOT on the transition. J. Phys. B Atom. Mol. Opt. Phys. 49(14), 145006 (2016)

    Article  ADS  Google Scholar 

  3. N. Kostylev, C.R. Locke, M.E. Tobar, J.J. McFerran, Spectroscopy and laser cooling on the 1S0 - 3P1 line in Yb via an injection-locked diode laser at 1111.6 nm. Appl. Phys. B 118(4), 517–525 (2015)

    Article  ADS  Google Scholar 

  4. S.C. Burd, D.T.C. Allcock, T. Leinonen, J.P. Penttinen, D.H. Slichter, R. Srinivas, A.C. Wilson, P. ördens, VECSEL systems for the generation and manipulation of trapped magnesium ions. Optica 3(12), 1294–1299 (2016)

    Article  Google Scholar 

  5. Y. Feng, L. Taylor, D.B. Calia, Multiwatts narrow linewidth fiber Raman amplifiers. Opt. Express 16(15), 10927–10932 (2008)

    Article  ADS  Google Scholar 

  6. S. Uetake, A. Yamaguchi, S. Kato, Y. Takahashi, High power narrow linewidth laser at 556 nm for magneto-optical trapping of ytterbium. Appl. Phys. B 92(1), 33–35 (2008)

    Article  ADS  Google Scholar 

  7. R. Paschotta, J. Nilsson, A.C. Tropper, D.C. Hanna, Ytterbium-doped fiber amplifiers. IEEE J. Quantum Electron. 33(7), 1049–1056 (1997)

    Article  ADS  Google Scholar 

  8. D.A. Grukh, A.S. Kurkov, V.M. Paramonov, E.M. Dianov, Effect of heating on the optical properties of Yb3+-doped fibres and fibre lasers. Quantum Electron. 34(6), 579 (2004)

    Article  ADS  Google Scholar 

  9. H. Jeong, H. Park, S. Kim, J. Kim, Chulsoo Byun, Cheolho Kim, Output power improvement in an Yb-doped fiber laser with an additional unpumped Yb-doped fiber. Opt. Rev. 19(2), 86–88 (2012)

    Article  Google Scholar 

  10. J. Koponen, M. Söderlund, H.J. Hoffman, D.A.V. Kliner, J.P. Koplow, and Mircea Hotoleanu. Photodarkening rate in Yb-doped silica fibers. Appl. Opt. 47(9), 1247–1256 (2008)

    Article  ADS  Google Scholar 

  11. B. Gouhier, G. Guiraud, S. Rota-Rodrigo, J. Zhao, N. Traynor, G. Santarelli, 25W single-frequency, low noise fiber MOPA at 1120nm. Opt. Lett. 43(2), 308–311 (2018)

    Article  ADS  Google Scholar 

  12. M.P. Kalita, S.U. Alam, C. Christophe, S. Yoo, A.J. Boyland, M. Ibsen, J.K. Sahu, Multi-watts narrow-linewidth all fiber Yb-doped laser operating. Opt. Express 18(6), 5920–5925 (2010)

    Article  ADS  Google Scholar 

  13. C.J. Mackechnie, W.L. Barnes, D.C. Hanna, J.E. Townsend, High power ytterbium (Yb3+)-doped fibre laser operating in the 1.12 \(\mu\)m region. Electron. Lett. 29(1), 52–53 (1993)

    Article  ADS  Google Scholar 

  14. A.S. Kurkov, V.M. Paramonov, O.I. Medvedkov, Ytterbium fiber laser emitting at 1160 nm. Laser Phys. Lett. 3(10), 503 (2006)

    Article  ADS  Google Scholar 

  15. A.S. Kurkov, E.M. Dianov, Moderate-power cw fibre lasers. Quantum Electron. 34(10), 881 (2004)

    Article  ADS  Google Scholar 

  16. J. E. Gray , D. W. Allan. A Method for Estimating the Frequency Stability of an Individual Oscillator. In 28th Annual Symposium on Frequency Control, pp. 243–246, May (1974)

  17. Carl Hippler, Ein selbstgebauter Ytterbium-Faserverstärker mit 25 W Ausgangsleistung bei 1064 nm zur Realisierung eines optischen Gitters für ultrakalte RbCs-Moleküle. Master’s thesis (TU München, 2013)

  18. C. Barnard, P. Myslinski, J. Chrostowski, M. Kavehrad, Analytical model for rare-earth-doped fiber amplifiers and lasers. IEEE J. Quantum Electron. 30(8), 1817–1830 (1994)

    Article  ADS  Google Scholar 

  19. S. Höfer, A. Liem, J. Limpert, H. Zellmer, Single-frequency master-oscillator fiber power amplifier system emitting 20 W of power. Opt. Lett. 26, 1326–1328 (2001)

    Article  ADS  Google Scholar 

  20. C. Bruni, A. Görlitz, Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb. Phys. Rev. A 94, 022503 (2016)

    Article  ADS  Google Scholar 

  21. C. Bruni, F. Münchow, A. Görlitz, Optical Autler-Townes spectroscopy in a heteronuclear mixture of laser-cooled atoms. Appl. Phys. B 123(1), 6 (2017)

    Article  ADS  Google Scholar 

  22. T.H. Loftus, T. Ido, M.M. Boyd, A.D. Ludlow, Jun Ye, Narrow line cooling and momentum-space crystals. Phys. Rev. A 70, 063413 (2004)

    Article  ADS  Google Scholar 

  23. S.L. Kemp, K.L. Butler, R. Freytag, S.A. Hopkins, E.A. Hinds, M.R. Tarbutt, S.L. Cornish, Production and characterization of a dual species magneto-optical trap of cesium and ytterbium. Rev. Sci. Instrum. 87(2), 023105 (2016)

    Article  ADS  Google Scholar 

  24. T. Topcu, A. Derevianko, Possibility of triple magic trapping of clock and Rydberg states of divalent atoms in optical lattices. J. Phys. B Atom. Mol. Opt. Phys. 49(14), 144004 (2016)

    Article  ADS  Google Scholar 

  25. F. Gerbier, J. Dalibard, Gauge fields for ultracold atoms in optical superlattices. N. J. Phys. 12(3), 033007 (2010)

    Article  Google Scholar 

  26. M. Riedmann, H. Kelkar, T. Wübbena, A. Pape, A. Kulosa, K. Zipfel, D. Fim, S. Rühmann, J. Friebe, W. Ertmer, E. Rasel, Beating the density limit by continuously loading a dipole trap from millikelvin-hot magnesium atoms. Phys. Rev. A 86, 043416 (2012)

    Article  ADS  Google Scholar 

  27. B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I.V. Sherstov, P.O. Schmidt, A single laser system for ground-state cooling of 25Mg+. Appl. Phys. B 104(3), 583–590 (2011)

    Article  ADS  Google Scholar 

  28. A. Frisch, K. Aikawa, M. Mark, A. Rietzler, J. Schindler, E. Zupanič, R. Grimm, F. Ferlaino, Narrow-line magneto-optical trap for erbium. Phys. Rev. A 85, 051401 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Ralf Stephan for his work on the electronic and mechanical components and Stephan Schiller for loan of the optical spectrum analyzer. T.F. acknowledges a fellowship from Prof.-W.-Behmenburg-Schenkung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Görlitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franzen, T., Pollklesener, B. & Görlitz, A. A single-stage 1112 nm fiber amplifier with large gain for laser cooling of ytterbium. Appl. Phys. B 124, 234 (2018). https://doi.org/10.1007/s00340-018-7106-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7106-7

Navigation