Skip to main content
Log in

Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The concept of the quantum cascade light-emitting transistor (QCLET) is proposed by incorporating periodic stages of quantum wells and barriers in the completely depleted base–collector junction of a heterojunction bipolar transistor. The radiative band-to-band base recombination in the QCLET is shown to be controllable using the base–collector voltage bias for a given emitter–base biasing condition. A self-consistent Schrödinger–Poisson Equation model is built to validate the idea of the QCLET. A GaAs-based QCLET is designed and fabricated. Control of radiative band-to-band base recombination is observed and characterized. By changing the voltage across the quantum cascade region in the QCLET, the alignment of quantum states in the cascade region creates a tunable barrier for electrons that allows or suppresses emitter-injected electron flow from the p-type base through the quantum cascade region into the collector. The field-dependent electron barrier in the base–collector junction manipulates the effective minority carrier lifetime in the base and controls the radiative base recombination process. Under different quantum cascade region biasing conditions, the radiative base recombination is measured and analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Feng, N. Holonyak Jr., W. Hafez, Appl. Phys. Lett. 84, 151 (2004)

    Article  ADS  Google Scholar 

  2. M. Feng, N. Holonyak Jr., B. Chu-Kung, G. Walter, R. Chan, Appl. Phys. Lett. 84, 4792 (2004)

    Article  ADS  Google Scholar 

  3. M. Feng, N. Holonyak Jr., R. Chan, Appl. Phys. Lett. 84, 1952 (2004)

    Article  ADS  Google Scholar 

  4. G. Walter, N. Holonyak Jr., M. Feng, R. Chan, Appl. Phys. Lett. 85, 4768 (2004)

    Article  ADS  Google Scholar 

  5. R. Chan, M. Feng, N. Holonyak Jr., G. Walter, Appl. Phys. Lett. 86, 131114 (2005)

    Article  ADS  Google Scholar 

  6. G. Walter, A. James, N. Holonyak Jr., M. Feng, R. Chan, Appl. Phys. Lett. 88, 232105 (2006)

    Article  ADS  Google Scholar 

  7. N. Holonyak Jr., M. Feng, IEEE Spectr. 43, 50 (2006)

    Article  Google Scholar 

  8. F. Dixon, M. Feng, N. Holonyak Jr., Y. Huang, X.B. Zhang, J.H. Ryou, R.D. Dupuis, Appl. Phys. Lett. 93, 021111 (2008)

    Article  ADS  Google Scholar 

  9. M. Feng, N. Holonyak Jr., H.W. Then, C.H. Wu, G. Walter, Appl. Phys. Lett. 94, 041118 (2009)

    Article  ADS  Google Scholar 

  10. F. Dixon, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 96, 241103 (2010)

    Article  ADS  Google Scholar 

  11. H.W. Then, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 94, 013509 (2009)

    Article  ADS  Google Scholar 

  12. F. Tan, R. Bambery, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 101, 151118 (2008)

    Article  ADS  Google Scholar 

  13. F. Tan, W. Xu, X. Huang, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 102, 081103 (2013)

    Article  ADS  Google Scholar 

  14. P. Lam, J.M. Dallesasse, G. Walter, in Digest of Papers 2014 International Conference on Compound Semiconductor Manufacturing Technology (2014), p. 91

  15. F. Tan, R. Bambery, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 99, 061105 (2011)

    Article  ADS  Google Scholar 

  16. J. Dallesasse, M. Feng, US Patent 8,948,226, filed August 2, 2013, issued February 3, 2015

  17. K. Chen, J.M. Dallesasse, in Digest of Papers 2014 International Conference on Compound Semiconductor Manufacturing Technology (2004), p. 75

  18. K. Chen, F.-C. Hsiao, B. Joy, J.M. Dallesasse, Proceedings SPIE 10123 (Photonics West, Novel In-Plane Semiconductor Lasers XVI, 2017), p. 1012318

  19. K. Chen, J.M. Dallesasse, in 55th Electronic Material Conference (2014)

  20. R. Bambery, F. Tan, M. Feng, J.M. Dallesasss, N. Holonyak Jr., IEEE. Photon. Technol. Lett. 25, 859 (2013)

    Article  ADS  Google Scholar 

  21. R. Bambery, C. Wang, J.M. Dallesasse, M. Feng, N. Holonyak Jr., Appl. Phys. Lett. 104, 081117 (2014)

    Article  ADS  Google Scholar 

  22. J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)

    Article  ADS  Google Scholar 

  23. M. Beck, D. Hofstetter, T. Aellen, J. Faist, U. Oesterle, M. Ilegems, E. Gini, H. Melchior, Science 295, 301 (2002)

    Article  ADS  Google Scholar 

  24. C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, Appl. Phys. Lett. 73, 3486 (1998)

    Article  ADS  Google Scholar 

  25. H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori, Appl. Phys. Lett. 78, 3529 (2001)

    Article  ADS  Google Scholar 

  26. C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001)

    Article  ADS  Google Scholar 

  27. A. Kosterev, F. Tittel, IEEE. J. Quant. Electron. 38, 582 (2002)

    Article  ADS  Google Scholar 

  28. D. Weidmann, F. Tittel, T. Aellen, M. Beck, D. Hostetter, J. Faist, S. Blaser, Appl. Phys. B 79, 907 (2004)

    Article  ADS  Google Scholar 

  29. C. Charlton, B. Temelkuran, G. Dellemann, B. Mizaikoff, Appl. Phys. Lett. 86, 194102 (2005)

    Article  ADS  Google Scholar 

  30. A. Kosterev, G. Wysocki, Y. Bakhirkin, S. So, R. Lewicki, M. Fraser, F. Tittel, R. Curl, Appl. Phys. B 90, 165 (2008)

    Article  ADS  Google Scholar 

  31. V. Spagnolo, A. Kosterev, L. Dong, R. Lewicki, F. Tittel, Appl. Phys. B 100, 125 (2010)

    Article  ADS  Google Scholar 

  32. A. Lee, B. Williams, S. Kumar, Q. Hu, J. Reno, IEEE Photon. Technol. Lett. 18, 1415 (2006)

    Article  ADS  Google Scholar 

  33. S. Kim, F. Hatami, J. Harris, A. Kurian, J. Ford, D. King, G. Scalari, M. Giovannini, N. Hoyler, J. Faist, G. Harris, Appl. Phys. Lett. 88, 153903 (2006)

    Article  ADS  Google Scholar 

  34. B. Behnken, G. Karunasiri, D. Chamberlin, P. Robrish, J. Faist, Opt. Lett. 33, 440 (2008)

    Article  ADS  Google Scholar 

  35. R. Martini, C. Gmachl, J. Falciglia, F. Curti, C. Bethea, F. Capasso, E.A. Whittaker, R. Paiella, A. Tredicucci, A. Hutchinson, D.L. Sivco, A.Y. Cho, Electron. Lett. 37, 191 (2001)

    Article  Google Scholar 

  36. R. Martini, C. Bethea, F. Capasso, C. Gmachl, R. Paiella, E.A. Whittaker, H.Y. Huang, D.L. Sivco, J.N. Baillargeon, A.Y. Cho, Electron. Lett. 38, 181 (2002)

    Article  Google Scholar 

  37. C. Juang, K.J. Kuhn, R.B. Darling, Phys. Rev. B 41, 12047 (1990)

    Article  ADS  Google Scholar 

  38. S. Datta, Superlattice Microstruct. 28, 253 (2000)

    Article  ADS  Google Scholar 

  39. R. Lake, G. Klimeck, R.C. Bowen, D. Jovanovic, J. Appl. Phys. 81, 7845 (1997)

    Article  ADS  Google Scholar 

  40. A.Y. Song, R. Bhat, P. Bouzi, C.-E. Zah, C.F. Gmachl, Phys. Rev. B 94, 165307 (2016)

    Article  ADS  Google Scholar 

  41. S.-C. Lee, A. Wacker, Phys. Rev. B 66, 245314 (2002)

    Article  ADS  Google Scholar 

  42. G. Klimeck, R. Lake, R.C. Bowen, W.R. Frensley, T.S. Moise, Appl. Phys. Lett. 67, 2539 (1995)

    Article  ADS  Google Scholar 

  43. A. Wacker, M. Lindskog, D.O. Winge, IEEE J. Sel. Top. Quantum Electron. 9, 1200611 (2013)

    Google Scholar 

  44. W.R. Frensley, Heterostructures and Quantum Devices (Academic, San Diego, 1994), p. 284

    Google Scholar 

  45. S. Hershfield, J.H. Davies, J.W. Wilkins, Phys. Rev. B 46, 7046 (1992)

    Article  ADS  Google Scholar 

  46. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  ADS  Google Scholar 

  47. J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (SIAM, Classics in Applied Mathematics, 2000), p. 183

Download references

Acknowledgements

Funding was provided by National Science Foundation (Grant no: ECCS 1408300).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kanuo Chen.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, K., Hsiao, FC., Joy, B. et al. Control of radiative base recombination in the quantum cascade light-emitting transistor using quantum state overlap. Appl. Phys. B 124, 129 (2018). https://doi.org/10.1007/s00340-018-6985-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6985-y

Navigation