Skip to main content

Advertisement

Log in

Chip-integrated plasmonic Schottky photodetection based on hybrid silicon waveguides

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We numerically and theoretically investigate the plasmonic Schottky photodetection in a novel hybrid silicon-on-insulator waveguide system, which consists of the silicon waveguides and detection area with the metal stripes and doped silicon film on the silicon dioxide substrate. The results illustrate that the fundamental TE mode in the silicon waveguide can be effectively coupled into the metal/silicon waveguide with the excitation of surface plasmon polaritons (SPPs). The coupling is suppressed for the TM mode due to the mismatch between the electric field distributions of the TM and SPP modes. It is found that the coupling efficiency from the TE to SPP mode is dependent on the width and height of the silicon waveguide and can significantly approach ~36.1%. The ultracompact configuration yields a high responsivity of ~21.7 mA/W and low dark current of ~0.45 μA for the photodetection at the communication wavelength. The plasmonic Schottky photodetector could find favorable applications in the chip-integrated optical interconnects and signal processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, T.W. Ebbesen, surface plasmon subwavelength optics. Nature 424(6950), 824–830 (2003)

    Article  ADS  Google Scholar 

  2. S.I. Bozhevolnyi, V.S. Volkov, E. Devaux, J.Y. Laluet, T.W. Ebbesen, Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440, 508–511 (2006)

    Article  ADS  Google Scholar 

  3. D. Gramotnev, S. Bozhevolnyi, Plasmonics beyond the diffraction limit. Nature Photon 4, 83–91 (2010)

    Article  ADS  Google Scholar 

  4. S. Enoch, R. Quidant, G. Badenes, Optical sensing based on plasmon coupling in nanoparticle arrays. Opt. Express 12, 3422–3427 (2004)

    Article  ADS  Google Scholar 

  5. S.Y. Yang, W.B. Chen, R.L. Nelson, Q.W. Zhan, Miniature circular polarization analyzer with spiral plasmonic lens. Opt. Lett. 34, 3047–3049 (2009)

    Article  ADS  Google Scholar 

  6. Q.Q. Gan, Y.J. Ding, F.J. Bartoli, ‘Rainbow’ trapping and releasing at telecommunication wavelengths. Phys. Rev. Lett. 102, 056801 (2009)

    Article  ADS  Google Scholar 

  7. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, G. Borghs Electrical detection of confined gap plasmons in metal-insulator-metal waveguides, Nat. Photonics 3, 283–286 (2009).

    Article  ADS  Google Scholar 

  8. D. O’Connor, M. McCurry, B. Lafferty, A.V. Zayats, Plasmonic waveguide as an efficient transducer for high-density data storage. Appl. Phys. Lett. 95, 171112 (2009)

    Article  ADS  Google Scholar 

  9. H. Lu, X. Liu, L. Wang, Y. Gong, D. Mao, Ultrafast all-optical switching in nanoplasmonic waveguide with Kerr nonlinear resonator. Opt. Express 19(4), 2910–2915 (2011)

    Article  ADS  Google Scholar 

  10. I.D. Leon, P. Berini, Amplification of long-range surface plasmons by a dipolar gain medium. Nat. Photonics 4(6), 382–387 (2010)

    Article  ADS  Google Scholar 

  11. H. Lu, X.M. Liu, D. Mao, L.R. Wang, Y.K. Gong, Tunable band-pass plasmonic waveguide filters with nanodisk resonators. Opt. Express 18(17), 17922–17927 (2010)

    Article  ADS  Google Scholar 

  12. B. Cai, B. Jia, Z. Shi, M. Gu, Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells. Appl. Phys. Lett. 102, 093107 (2013)

    Article  ADS  Google Scholar 

  13. J. Gosciniak, S.I. Bozhevolnyi, “Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides”. Sci. Rep 3, 1803 (2013)

    ADS  Google Scholar 

  14. Y. Zhang, N. Stokes, B. Jia, S. Fan, M. Gu, “Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss”. Sci. Rep 4, 4939 (2014)

    ADS  Google Scholar 

  15. H. Lu, X. Liu, D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems”. Phys. Rev. A 85, 053803 (2012)

    Article  ADS  Google Scholar 

  16. P. Berini, Surface plasmon photodetectors and their applications Laser Photon. Rev. 8, 197–220 (2014).

    Article  Google Scholar 

  17. H. Ditlbacher, F.R. Aussenegg, J.R. Krenn, B. Lamprecht, G. Jakopic, G. Leising, Organic diodes as monolithically integrated surface plasmon polariton detectors. Appl. Phys. Lett. 89, 161101 (2006)

    Article  ADS  Google Scholar 

  18. L. Tang, S. Kocabas, S. Latif, A. Okyay, D. Ly-Gagnon, K. Saraswat, and D. Miller, “Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna,” Nat. Photonics 2, 226–229 (2008).

  19. A. Akbari, P. Berini, Schottky contact surface-plasmon detector integrated with an asymmetric metal stripe waveguide. Appl. Phys. Lett. 95, 021104 (2009)

    Article  ADS  Google Scholar 

  20. A. Akbari, R. Tait, P. Berini, “Surface plasmon waveguide Schottky detector”. Opt. Express 18, 8505–8514 (2010)

    Article  ADS  Google Scholar 

  21. M. Knight, H. Sobhani, P. Nordlander, N. Halas, Photodetection with active optical antennas. Science 332, 702 (2011)

    Article  ADS  Google Scholar 

  22. P. Berini, A. Olivieri, C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si”. Nanotechnology 23, 444011 (2012)

    Article  Google Scholar 

  23. A. Akbari, A. Olivieri, P. Berini, Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon, IEEE J. Sel. Top. Quant. Electron. 19, 4600209 (2013).

    Article  Google Scholar 

  24. W. Li, J. Valentine, “Metamaterial Perfect Absorber Based Hot Electron Photodetection”. Nano Lett. 14(6), 3510–3514 (2014)

    Article  ADS  Google Scholar 

  25. Z. Han, I. Radko, N. Mazurski, B. Desiatov, J. Beermann, O. Albrektsen, U. Levy, S. Bozhevolnyi, On-chip detection of radiation guided by dielectric-loaded plasmonic waveguides. Nano Lett. 14, 476–480 (2015)

    Article  ADS  Google Scholar 

  26. R. Soref, R.E. Peale, W. Buchwald, Longwave plasmonics on doped silicon and silicides. Opt. Express 16, 6507 (2008)

    Article  ADS  Google Scholar 

  27. F. Marquier, K. Joulain, J.P. Mulet, R. Carminati, J. Greffet, “Engineering infrared emission properties of silicon in the near field and the far field”. Opt. Commun 237, 379 (2004)

    Article  ADS  Google Scholar 

  28. Y. Gong, Z. Li, J. Fu, Y. Chen, G. Wang, H. Lu, L. Wang, X. Liu, Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Opt. Express 19, 10193 (2011)

    Article  ADS  Google Scholar 

  29. R.M. Briggs, J. Grandidier, S.P. Burgos, E. Feigenbaum, H. Atwater, Efficient coupling between dielectric-loaded plasmonic and silicon photonic waveguides. Nano Lett. 10, 4851–4857 (2010)

    Article  ADS  Google Scholar 

  30. A. Emboras, R. Briggs, A. Najar, S. Nambiar, C. Delacour, P. Grosse, E. Augendre, J. Fedeli, B. Salvo, H. Atwater, R. Lamaestre, Efficient coupler between silicon photonic and metal-insulator-silicon-metal plasmonic waveguides. Appl. Phys. Lett. 101, 251117 (2012)

    Article  ADS  Google Scholar 

  31. R. Hunsperger Integrated Optics: Theory and Technology, Springer, 6th Edn (2009)

  32. M. Lipson, Guiding, modulating, and emitting Light on silicon-challenges and opportunities. IEEE J. Lightwave Techn. 23, 4222 (2005).

    Article  ADS  Google Scholar 

  33. H. Okayama, Y. Onawa, D. Shimura, H. Yaegashi, H. Sasaki, Polarization rotation Bragg grating using Si wire waveguide with non-vertical sidewall. Opt. Express 22, 31371 (2014)

    Article  ADS  Google Scholar 

  34. J. Driscoll, X.P. Liu, S. Yasseri, I. Hsieh, J.I. Dadap, R. Osgood, Large longitudinal electric fields (Ez) in silicon nanowire waveguides. Opt. Express 17, 2797–2804 (2009)

    Article  ADS  Google Scholar 

  35. S. Mousavi, A. Stöhr, P. Berini, “Plasmonic photodetector with terahertz electrical bandwidth”. Appl. Phys. Lett. 104, 143112 (2014)

    Article  ADS  Google Scholar 

  36. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, U. L., Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band. Opt. Express 20, 28594 (2012)

    Article  ADS  Google Scholar 

  37. K. Balram, D. Miller, Self-aligned silicon fins in metallic slits as a platform for planar wavelength-selective nanoscale resonant photodetectors. Opt. Express 20, 22735 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported from the Australian Research Council (ARC) Centre of Excellence for Ultrahigh-bandwidth Devices for Optical Systems (CUDOS) (Project Number CE110001018), the ARC Discovery Grant (DP140100849), and Fundamental Research Funds for the Central Universities (3102016OQD03, G2016KY0303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, H., Gu, M. Chip-integrated plasmonic Schottky photodetection based on hybrid silicon waveguides. Appl. Phys. B 123, 71 (2017). https://doi.org/10.1007/s00340-017-6659-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-017-6659-1

Keywords

Navigation