Skip to main content
Log in

Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We study the lasing modes of microdisk lasers with ring-like electrodes or active regions, in two-dimensional (2-D) formulation. The considered eigenvalue problem is adapted to the extraction of both modal spectra and thresholds from the Maxwell equations with exact boundary conditions. We reduce it to a transcendental equation and solve it numerically. The obtained lasing frequencies and the associated values of threshold material gain of the ring-pumped laser are compared with similar quantities of the fully active microdisk. This comparison shows that the optimal position of the active ring is shifted inward from the disk rim. Its location and width can be used as an engineering instrument to manipulate the thresholds. This effect is explained using the optical theorem and overlap coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.L. McCall, A.F.J. Levi, R.E. Slusher, S.J. Pearson, R.A. Logan, Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60(3), 289–292 (1992)

    Article  ADS  Google Scholar 

  2. A.I. Nosich, E.I. Smotrova, S.V. Boriskina, T.M. Benson, P. Sewell, Trends in microdisk laser research and linear optical modelling. Opt. Quantum Electron. 39(15), 1253–1272 (2007)

    Article  Google Scholar 

  3. T. Harayama, S. Shinohara, Two-dimensional microcavity lasers. Laser Photon. Rev. 5(2), 247–271 (2011)

    Article  Google Scholar 

  4. L. He, S.K. Ozdemir, L. Yang, Whispering gallery microcavity lasers. Laser Photon. Rev. 7(1), 60–82 (2013)

    Article  Google Scholar 

  5. E.I. Smotrova, A.I. Nosich, Optical coupling of an active microdisk to a passive one: effect on the lasing thresholds of the whispering-gallery supermodes. Opt. Lett. 38(12), 2059–2061 (2013)

    Article  ADS  Google Scholar 

  6. Y. Zhang, X. Zhang, K.H. Li, Y.F. Cheung, C. Feng, H.W. Cho, Advances in III-nitride semiconductor microdisk lasers. Phys. Status Solidi A 212(5), 960–973 (2015)

    Article  Google Scholar 

  7. S. Yang, Y. Wang, H. Sun, Advances and prospects for whispering gallery mode microcavities. Adv. Opt. Mater. 3, 1136–1162 (2015)

    Article  Google Scholar 

  8. H. Cao, J. Wiersig, Dielectric microcavities: Model systems for wave chaos and non-Hermitian physics. Rev. Mod. Phys. 87(1), 61–111 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  9. A.A. Bogdanov, I.S. Mukhin, N.V. Kryzhanovskaya, M.V. Maximov, Z.F. Sadrieva, M.M. Kulagina, Y.M. Zadiranov, A.A. Lipovskii, E.I. Moiseev, Y.V. Kudashova, A.E. Zhukov, Mode selection in InAs quantum dot microdisk lasers using focused ion beam technique. Opt. Lett. 40(17), 4022–4025 (2015)

    Article  ADS  Google Scholar 

  10. X.-F. Jiang, C.-L. Zou, L. Wang, Q. Gong, Y.-F. Xiao, Whispering-gallery microcavities with unidirectional laser emission. Laser Photon. Rev. 10(1), 40–61 (2016)

    Article  Google Scholar 

  11. S. Bittner, C. Lafargue, I. Gozhyk, N. Djellali, L. Milliet, D.T. Hickox-Young, C. Ulysse, D. Bouche, R. Dubertrand, E. Bogomolny, J. Zyss, M. Lebental, Origin of emission from square-shaped organic microlasers. Eur. Phys. Lett. 113(5), 54002/18 (2016)

    Article  ADS  Google Scholar 

  12. Y.-D. Yang, Y.-Z. Huang, Mode characteristics and directional emission for square microcavity lasers. J. Phys. D Appl. Phys. 49(25), 253001/18 (2016)

    ADS  Google Scholar 

  13. G.D. Chern, H.E. Tureci, A. Douglas Stone, R.K. Chang, M. Kneissl, N.M. Johnson, Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars. Appl. Phys. Lett. 83(9), 1710–1712 (2003)

    Article  ADS  Google Scholar 

  14. G.D. Chern, G.E. Fernandas, R.K. Chang, Q. Song, L. Xu, M. Kneissl, N.M. Johnson, High-Q-preserving coupling between a spiral and a semicircle μ-cavity. Opt. Lett. 32(9), 1093–1095 (2007)

    Article  ADS  Google Scholar 

  15. S. Shinohara, T. Harayama, T. Fukushima, M. Hentschel, T. Sasaki, E.E. Narimanov, Chaos-assisted directional light emission from microcavity lasers. Phys. Rev. Lett. 104(16), 163902/4 (2010)

    Article  ADS  Google Scholar 

  16. S.F. Liew, B. Redding, L. Ge, G.S. Solomon, H. Cao, Active control of emission directionality of semiconductor microdisk lasers. Appl. Phys. Lett. 104(23), 4 (2014)

    Article  Google Scholar 

  17. H. Long, Y.-Z. Huang, X.-W. Ma, Y.-D. Yang, J.-L. Xiao, L.-X. Zou, B.-W. Liu, Dual-transverse-mode microsquare lasers with tunable wavelength interval. Opt. Lett. 40(15), 3548–3551 (2015)

    Article  ADS  Google Scholar 

  18. E.I. Smotrova, A.I. Nosich, T.M. Benson, P. Sewell, Cold-cavity thresholds of microdisks with uniform and non-uniform gain: quasi-3D modeling with accurate 2D analysis. IEEE J. Sel. Top. Quantum Electron. 11(5), 1135–1142 (2005)

    Article  Google Scholar 

  19. A.S. Zolotukhina, A.O. Spiridonov, E.M. Karchevskii, A.I. Nosich, Comparison of the lasing modes of a microdisk and a microring, in International Conference on Transparent Optical Networks, Budapest, We.P.10 (2015)

  20. A.S. Zolotukhina, A.O. Spiridonov, E.M. Karchevskii, A.I. Nosich, Lasing modes of a microdisk with a ring gain area and of an active microring. Opt. Quantum Electron. 47(12), 3883–3891 (2015)

    Article  Google Scholar 

  21. E.I. Smotrova, V.O. Byelobrov, T.M. Benson, J. Ctyroky, R. Sauleau, A.I. Nosich, Optical theorem helps understand thresholds of lasing in microcavities with active regions. IEEE J. Quantum Electron. 47(1), 20–30 (2011)

    Article  ADS  Google Scholar 

  22. S. Nojima, Theoretical analysis of feedback mechanisms of two-dimensional finite-sized photonic-crystal lasers. J. Appl. Phys. 98(4), 043102/9 (2005)

    Article  ADS  Google Scholar 

  23. M.P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Room-temperature subwavelength metallo-dielectric lasers. Nat. Photon. 4, 395–399 (2010)

    Article  ADS  Google Scholar 

  24. A. Mock, First principles derivation of microcavity semiconductor laser threshold condition and its application to FDTD active cavity modeling. J. Opt. Soc. Am. B 27(11), 2262–2272 (2010)

    Article  ADS  Google Scholar 

  25. S.W. Chang, Confinement factors and modal volumes of micro- and nanocavities invariant to integration regions. IEEE J. Sel. Top. Quantum Electron. 18(6), 1771–1780 (2012)

    Article  ADS  Google Scholar 

  26. D. Gagnon, J. Dumont, J.-L. Deziel, L.J. Dube, Ab initio investigation of lasing thresholds in photonic molecules. J. Opt. Soc. Am. B 31(8), 1867–1873 (2014)

    Article  ADS  Google Scholar 

  27. Y. Huang, Y.Y. Lu, Efficient method for lasing eigenvalue problems of periodic structures. J. Mod. Opt. 61(5), 390–396 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Nosich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolotukhina, A.S., Spiridonov, A.O., Karchevskii, E.M. et al. Electromagnetic analysis of optimal pumping of a microdisk laser with a ring electrode. Appl. Phys. B 123, 32 (2017). https://doi.org/10.1007/s00340-016-6625-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6625-3

Keywords

Navigation