Skip to main content
Log in

Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Laser-induced breakdown spectroscopy (LIBS) technique is used to record some plasma emissions of different laminar diffusion methanol, ethanol, and n-propanol alcohol flames, to investigate the shapes, structures (i.e., reactants and products zones), kind, and quality of burning in different areas. For this purpose, molecular bands of CH, CH*, C2, CN, and CO as well as atomic and ionic lines of C, H, N, and O are identified, simultaneously. Experimental results indicate that the CN and C2 emissions have highest intensity in LIBS spectrum of n-propanol flame and the lowest in methanol. In addition, lowest content of CO pollution and better quality of burning process in n-propanol fuel flame toward ethanol and methanol are confirmed by comparison between their CO molecular band intensities. Moreover, variation of the signal intensity from these three flames with that from a known area of burner plate is compared. Our findings in this research advance the prior results in time-integrated LIBS combustion application and suggesting that LIBS can be used successfully with the CCD detector as a non-gated analytical tool, given its simple instrumentation needs, real-time capability applications of molecular detection in laminar diffusion flame samples, requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. A.C. Eckbreth, Laser Diagnostics for Combustion, Temperature and Species (Abacus Press, Cambridge, 1987)

    Google Scholar 

  2. B. Zhou, C. Brackmann, Q. Li, Z. Wang, P. Petersson, Z. Li, M. Aldén, X. Bai, Distributed reactions in highly turbulent premixed methane/air flames: part I. Flame structure characterization. Combust. Flame 162, 2937–2953 (2015)

    Article  Google Scholar 

  3. J. Zetterberg, S. Blomberg, J. Gustafson, J. Evertsson, J. Zhou, E.C. Adams, P.-A. Carlsson, M. Aldén, E. Lundgren, Spatially and temporally resolved gas distributions around heterogeneous catalysts using infrared planar laser-induced fluorescence. Nat. Commun. 6, 1–8 (2015)

    Article  Google Scholar 

  4. Z. Wang, Y. Zhou, R. Whiddon, Y. He, K. Cena, Z. Li, Investigation of NO formation in premixed adiabatic laminar flames of H2/CO syngas and air by saturated laser-induced fluorescence and kinetic modeling. Combust. Flame 164, 283–293 (2016)

    Article  Google Scholar 

  5. G. Magnotti, D. Geyer, R.S. Barlow, Interference free spontaneous Raman spectroscopy for measurements in rich hydrocarbon flames. Proc. Combust. Inst. 35, 3765–3772 (2015)

    Article  Google Scholar 

  6. S. Ghosal, H. Fang, Raman spectroscopy based identification of flame retardants in consumer products using an acquired reference spectral library. Talanta 32, 635–640 (2015)

    Article  Google Scholar 

  7. J. Wagner, S. Ghosal, T. Whitehead, C. Metayer, Morphology, spatial distribution, and concentration of flame retardants in consumer products and environmental dusts using scanning electron microscopy and Raman micro-spectroscopy. Environ. Int. 59, 16–26 (2013)

    Article  Google Scholar 

  8. A.G. Gaydon, H.G. Wolfhard, The Spectroscopy of Flames, 4th edn. (Chapman and Hall, London, 1979)

    Google Scholar 

  9. K.E. Eseller, F.Y. Yueh, J.P. Singh, Laser-induced breakdown spectroscopy measurement in methane and biodiesel flames using an ungated detector. Appl. Opt. 47, G144–G148 (2008)

    Article  Google Scholar 

  10. M. Kotzagianni, E. Kakkava, S. Couris, Laser-induced breakdown spectroscopy (LIBS) for the measurement of spatial structures and fuel distribution in flames. Appl. Spectrosc. 0, 1–8 (2016)

    Google Scholar 

  11. A.E. Majd, A.S. Arabanian, R. Massudi, M. Nazeri, Spatially resolved laser-induced breakdown spectroscopy in methane–air diffusion flames. Appl. Spectrosc. 65, 36 (2011)

    Article  ADS  Google Scholar 

  12. Y. He, J. Zhu, B. Li, Z. Wang, Z. Li, M. Aldén, K. Cen, In-situ measurement of sodium and potassium release during oxy- fuel combustion of lignite using laser-induced breakdown spectroscopy: effects of O2 and CO2 concentration. Energy Fuels 27, 1123–1130 (2013)

    Article  Google Scholar 

  13. W. Shangmin, Z. Jialiang, W. Cong, W. Dezhen, An application scheme of LIBS to detect trace ethanol and methanol. Vacuum 110, 221–227 (2014)

    Article  Google Scholar 

  14. H. Fatehi, Y. Heb, Z. Wang, Z.S. Li, X.S. Bai, M. Aldén, K.F. Cen, LIBS measurements and numerical studies of potassium release during biomass gasification. Proc. Combust. Inst. 35, 2389–2396 (2015)

    Article  Google Scholar 

  15. G. Yang, Q. Lin, Y. Ding, D. Tian, Y. Duan, Laser induced breakdown spectroscopy based on single beam splitting and geometric configuration for effective signal enhancement. Sci. Rep. 5, 1–11 (2014)

    Google Scholar 

  16. R.T. Haslam, W.C. Lovell, R.D. Hunneman, Ind. Eng. Chem. 17, 272 (1925)

    Article  Google Scholar 

  17. H.-L. Li, X.-Y. Weia, H.-L. Xu, S.-L. Chin, K. Yamanouchi, H.-B. Sun, Femtosecond laser filamentation for sensing combustion intermediates: a comparative study. Sens. Actuators 203, 887–890 (2014)

    Article  Google Scholar 

  18. S.M. Sarathy, P. Oßwald, N. Hansen, K. Kohse-Höinghaus, Alcohol combustion chemistry. Prog. Energy Combust. 44, 40–102 (2014)

    Article  Google Scholar 

  19. H. Xu, Y. Cheng, S.-L. Chin, H.-B. Sun, Femtosecond laser ionization and fragmentation of molecules for environmental sensing. Laser Photonics Rev. 9, 1–19 (2015)

    Article  Google Scholar 

  20. T.S. Norton, F.L. Dryer, The flow reactor oxidation of C1–C4 alcohols and MTEB. Combust. Inst. 23, 179–185 (1991)

    Article  Google Scholar 

  21. H. Li, W. Chu, H. Xu, Y. Cheng, S.-L. Chin, K. Yamanouchi, H.-B. Sun, Simultaneous identification of multi-combustion-intermediates of alkanol–air flames by femtosecond filament excitation for combustion sensing. Sci. Rep. 6, 27340 (2016)

    Article  ADS  Google Scholar 

  22. S.J. Mousavi, M.H. Farsani, S.M.R. Darbani, N. Asadorian, M. Soltanolkotabi, A.E. Majd, Identification of atomic lines and molecular bands of benzene and carbon disulfide liquids by using LIBS. Appl. Opt. 54, 1713–1720 (2015)

    Article  ADS  Google Scholar 

  23. J. Beeckmann, L. Cai, H. Pitsch, Experimental investigation of the laminar burning velocities of methanol, ethanol, n-propanol, and n-butanol at high pressure. Fuel 117, 340–350 (2014). NIST atomic spectra database. (http://physics.nist.gov/physRefdata/ASD/)

    Article  Google Scholar 

  24. H. Li, W. Chu, H. Xu, Y. Cheng, S.-L. Chin, K. Yamanouchi, H.-B. Sun, Simultaneous identification of multi-combustion-intermediates of alkanol–air flames by femtosecond filament excitation for combustion sensing. Sci. Rep. 6, 1–7 (2016)

    Article  Google Scholar 

  25. G. Vourliotakis, G. Skevis, M.A. Founti, Some aspects of combustion chemistry of C1–C2 oxygenated fuels in low pressure premixed flames. Proc. Combust. Inst. 35, 437–445 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

Hereby, we would like to acknowledge Malek Ashtar Optics and Laser Science and Technology Research Center for supplying the equipment used in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Ghezelbash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghezelbash, M., Majd, A.E., Darbani, S.M.R. et al. Spatial investigation of plasma emission from laminar diffusion methanol, ethanol, and n-propanol alcohol flames using LIBS method. Appl. Phys. B 123, 36 (2017). https://doi.org/10.1007/s00340-016-6615-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6615-5

Keywords

Navigation