Skip to main content
Log in

Non-linear optics of nano-scale pentacene thin film

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ < 800 nm, whereas the normal dispersion was found at wavelength λ > 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10−13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive  Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. I.S. Yahia, A. Jilani, M.M. Abutalib, S. AlFaify, M. Shkir, MSh Abdel-wahab, A.A. Al-Ghamdi, A.M. El-Naggar, Phys. B 490, 25 (2016)

    Article  ADS  Google Scholar 

  2. L.W. Ratner, Non-linear Theory of Elasticity and Optimal Design (Elsevier, Amsterdam, 2003)

    MATH  Google Scholar 

  3. R.W. Boyd, Nonlinear Optics, 3rd edn. (Academic Press‏, London, 2008)

    Google Scholar 

  4. A.E. Willner, L. Tingye, I. Kaminow, Optical Fiber Telecommunications (Academic Press, New York, 2013)

    Google Scholar 

  5. F. Yakuphanoglu, M. Sekerci, O.F. Ozturk, Opt. Commun. 239, 275 (2004)

    Article  ADS  Google Scholar 

  6. T.C. Berkelbach, M.S. Hybertsen, D.R. Reichman, J. Chem. Phys. 138, 114103 (2013)

    Article  ADS  Google Scholar 

  7. R.L. Gieseking, S. Mukhopadhyay, C. Risko, J.L. Brédas, ACS Photonics 1, 261 (2014)

    Article  Google Scholar 

  8. C.D. Dimitrakopoulos, P.R. Malenfant, Adv. Mater. 14, 99 (2002)

    Article  Google Scholar 

  9. D. Knipp, R.A. Street, B. Krusor, R. Apte, J. Ho, J. Non-Cryst. Solids 299–302, 1042 (2002)

    Article  Google Scholar 

  10. L.W. Tutt, A. Kost, Nature 356, 225 (1992)

    Article  ADS  Google Scholar 

  11. A. Völkel, R. Street, D. Knipp, Phys. Rev. B 66, 195336 (2002)

    Article  ADS  Google Scholar 

  12. K. Tremel, S. Ludwigs, Adv. Polym. Sci. 265, 39 (2014)

    Article  Google Scholar 

  13. J. Northrup, M. Tiago, S. Louie, Phys. Rev. B 66, 121404 (2002)

    Article  ADS  Google Scholar 

  14. R.B. Campbell, J.M. Robertson, Acta Cryst. 15, 289 (1962)

    Article  Google Scholar 

  15. Y.S. Yang, S.H. Kim, J.I. Lee, H.Y. Chu, L.M. Do, H. Lee, J. Oh, T. Zyung, M.K. Ryu, Appl. Phys. Lett. 80, 1595 (2002)

    Article  ADS  Google Scholar 

  16. H. Sirringhaus, Adv. Mater. 17, 2411 (2005)

    Article  Google Scholar 

  17. C.C. Mattheus, A.B. Dros, J. Baas, G.T. Oostergetel, A. Meetsma, J.L. de Boer, T.T.M. Palstra, Synth. Met. 138, 475 (2003)

    Article  Google Scholar 

  18. T. Siegrist, C. Kloc, J.H. Schön, B. Batlogg, R.C. Haddon, S. Berg, G.A. Thomas, Angew. Chem. Int. Ed. 40, 1732 (2001)

    Article  Google Scholar 

  19. A. Vollmer, O.D. Jurchescu, I. Arfaoui, I. Salzmann, T.T.M. Palstra, P. Rudolf, J. Niemax, J. Pflaum, J.P. Rabe, N. Koch, Eur. Phys. J. E 17, 339 (2005)

    Article  Google Scholar 

  20. K. Kamada, K. Ohta, T. Kubo, A. Shimizu, Y. Morita, K. Nakasuji, R. Kishi, S. Ohta, S. Furukawa, H. Takahashi, M. Nakano, Angew. Chem. Int. Ed. 46, 3544 (2007)

    Article  Google Scholar 

  21. R.A. Ganeev, A.I. Ryasnyansky, R.I. Tugushev, T. Usmanov, F. Charra, V. Agranovich, F. Kajzar, Organic Nanophotonics (Springer, New York, 2013)

    Google Scholar 

  22. I.S. Yahia, Y.S. Rammah, S. Alfaify, F. Yakuphanoglu, Superlattices Microstruct. 64, 58 (2013)

    Article  ADS  Google Scholar 

  23. K. Shin, S.Y. Yang, C. Yang, H. Jeon, C.E. Park, Org. Electron. 8, 336 (2007)

    Article  Google Scholar 

  24. T. Minakata, H. Imai, M. Ozaki, K. Saco, J. Appl. Phys. 72, 5220 (1992)

    Article  ADS  Google Scholar 

  25. G.K. Williamson, R.E. Smallman, Philos. Mag. 1, 34 (1956)

    Article  ADS  Google Scholar 

  26. S.H. Kim, H.Y. Choi, S.H. Han, J. Jang, J. Korean Phys. Soc. 45, 760 (2004)

    Google Scholar 

  27. S.E. Fritz, T.W. Kelley, C.D. Frisbie, J. Phys. Chem. B 109, 10574 (2005)

    Article  Google Scholar 

  28. R. Swanepoel, J. Phys. E Sci. Instrum. 17, 896 (1984)

    Article  ADS  Google Scholar 

  29. H. Neumann, W. Hörig, E. Reccius, H. Sobotta, B. Schumann, G. Kuhn, Thin Solid Films 61, 13 (1979)

    Article  ADS  Google Scholar 

  30. L. Guo, S. Yang, C. Yang, P. Yu, J. Wang, W. Ge et al., Appl. Phys. Lett. 76, 2901 (2000)

    Article  ADS  Google Scholar 

  31. P.M. Verghese, D.R. Clarke, J. Appl. Phys. 87, 4430 (2000)

    Article  ADS  Google Scholar 

  32. J. Zyss, I. Ledoux, Chem. Rev. 94, 77 (1994)

    Article  Google Scholar 

  33. C. Bosshard, M. Bösch, I. Liakatas, M. Jäger, P. Günter, Nonlinear Optical Effects and Materials (Springer, New York, 2000)

    Google Scholar 

  34. A. Jilani, M.S. Abdel-wahab, A.A. Al-, A. Dahlan, I.S. Yahia, Phys. B 481, 97 (2016)

    Article  ADS  Google Scholar 

  35. H. Tichá, L. Tichý, J. Optoelectron. Adv. Mater. 4, 381 (2002)

    Google Scholar 

  36. C. Wang, Phys. Rev. B 2, 2045 (1970)

    Article  ADS  Google Scholar 

  37. J.J. Wyne, Phys. Rev. 178, 1295 (1969)

    Article  ADS  Google Scholar 

  38. W.L. Smith, M.J. Weber, Handbook of Laser Science and Technology (Chemical Rubber Co., Boca Raton, 1986)

    Google Scholar 

  39. H. Reis, M.G. Papadopoulos, P. Calaminici, K. Jug, A.M. Köster, Chem. Phys. 261, 359 (2000)

    Article  ADS  Google Scholar 

  40. H.S. Nalwa, S. Myata, P.A. Fleitz, Nonlinear Optics of Organic Molecules and Polymers (CRC Press, Boca Raton, 1997)

    Google Scholar 

Download references

Acknowledgments

The project was financially supported by King Saud University, Vice Deanship of Research Chairs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Jilani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahia, I.S., Alfaify, S., Jilani, A. et al. Non-linear optics of nano-scale pentacene thin film. Appl. Phys. B 122, 191 (2016). https://doi.org/10.1007/s00340-016-6467-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6467-z

Keywords

Navigation