Skip to main content
Log in

Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm−1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO (υ″ = 0 → υ′ = 2) R34–R36 and H2O at 4349.337 cm−1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. K. Kohse-Höinghaus, R.S. Barlow, M. Aldén, J. Wolfrum, Proc. Combust. Inst. 30, 89 (2005)

    Article  Google Scholar 

  2. M.A. Bolshov, Y.A. Kuritsyn, Y.V. Romanovskii, Spectrochim. Acta Part B At. Spectrosc. 106, 45 (2015)

    Article  ADS  Google Scholar 

  3. V. Ebert, J. Fitzer, I. Gerstenberg, K.-U. Pleban, H. Pitz, J. Wolfrum, M. Jochem, J. Martin, Symp. Combust. 27, 1301 (1998)

    Article  Google Scholar 

  4. Y. Deguchi, M. Noda, M. Abe, Proc. Combust. Inst. 29, 147 (2002)

    Article  Google Scholar 

  5. V. Ebert, H. Teichert, P. Strauch, T. Kolb, H. Seifert, J. Wolfrum, G. Nathan, F. Winter, Proc. Combust. Inst. 30(1), 1611 (2005)

    Article  Google Scholar 

  6. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  7. M. Lackner, G. Totschnig, G. Loeffler, H. Hofbauer, F. Winter, Therm. Sci. 6, 13 (2002)

    Article  Google Scholar 

  8. P. Ortwein, W. Woiwode, S. Fleck, M. Eberhard, T. Kolb, S. Wagner, M. Gisi, V. Ebert, Exp. Fluids 49, 961 (2010)

    Article  Google Scholar 

  9. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)

    Article  Google Scholar 

  10. R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, R.J. Pummill, T. Waind, D.R. Wagner, K.J. Whitty, Appl. Phys. B Lasers Opt. 116, 33 (2014)

    Article  ADS  Google Scholar 

  11. K. Sun, R. Sur, J.B. Jeffries, R.K. Hanson, T. Clark, J. Anthony, in 8th US National Combustion Meeting. Paper No. 070DI-0313 (2013)

  12. R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Fuel 150, 102 (2015)

    Article  Google Scholar 

  13. E. Schlosser, J. Wolfrum, L. Hildebrandt, H. Seifert, B. Oser, V. Ebert, Appl. Phys. B Lasers Opt. 75, 237 (2002)

    Article  ADS  Google Scholar 

  14. A.V. Sepman, V.M. van Essen, V.V. Toro, A.V. Mokhov, H.B. Levinsky, in Proceedings of the European Combustion Meeting. Paper No. 65 (2005)

  15. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  16. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    Article  ADS  Google Scholar 

  17. I.I. Sobelman, L.A. Vainshtein, E.A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Springer, Berlin, 1995)

    Book  Google Scholar 

  18. J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 21, 309 (1979)

    Article  ADS  Google Scholar 

  19. R. Whiddon, B. Zhou, J. Borggren, M. Aldén, Z.S. Li, Rev. Sci. Instrum. 86, 093107 (2015)

    Article  ADS  Google Scholar 

  20. A. Sepman, A.V. Mokhov, H.B. Levinsky, Proc. Combust. Inst. 29, 2187 (2003)

    Article  Google Scholar 

  21. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg. http://www.me.berkeley.edu/gri_mech/

  22. R. Kee, F. Rupley, J. Miller, Report No. 89-8009 (1989)

  23. J. Simonsson, N.-E. Olofsson, S. Török, P.-E. Bengtsson, H. Bladh, Appl. Phys. B 119, 657 (2015)

    Article  Google Scholar 

  24. H. Wiinikka, F. Weiland, E. Pettersson, O. Öhrman, P. Carlsson, J. Stjernberg, Combust. Flame 161, 1923 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been performed within the platform for entrained-flow gasification (Bio4Gasification) in the Swedish Centre for Gasification financed by the Swedish Energy Agency and the member companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sepman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepman, A., Ögren, Y., Gullberg, M. et al. Development of TDLAS sensor for diagnostics of CO, H2O and soot concentrations in reactor core of pilot-scale gasifier. Appl. Phys. B 122, 29 (2016). https://doi.org/10.1007/s00340-016-6319-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-016-6319-x

Keywords

Navigation