Skip to main content
Log in

Experimental evidence of temporal and spatial incoherencies of Q-switched Nd:YAG nanosecond laser pulses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Seeded nanosecond Q-switched Nd:YAG lasers working with an unstable resonator and a variable reflectivity mirror are widely used, for they represent useful sources for stable and repeatable light–matter interaction experiments. Moreover, in most setups, the fundamental wavelength is converted to higher harmonics. When the injection seeder is turned off, random longitudinal mode beating occurs in the cavity, resulting in strong variations of the temporal profile of the pulses. The generated spikes can then be ten times higher than the maximum of equivalent seeded pulses. This strong temporal incoherence is shown to engender spatial incoherence in the focal plane of such unseeded pulses leading to an instantaneous angular displacement of tens of µrad. This effect is even more pronounced after frequency conversion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. S. DeSilvestri, P. Laporta, V. Magni, O. Svelto, IEEE J. Quantum Electron. 24, 1172–1177 (1988)

    Article  ADS  Google Scholar 

  2. K.J. Snell, N. McCarthy, M. Piché, P. Lavigne, Opt. Commun. 65, 050377 (1988)

    Article  ADS  Google Scholar 

  3. A. Caprara, G.C. Reali, Opt. Lett. 17, 060414 (1992)

    Article  ADS  Google Scholar 

  4. G. Ansett, M. Nittmann, A. Borsutzky, R. Wallenstein, Appl. Phys. B 76, 833–838 (2003)

    Article  ADS  Google Scholar 

  5. Y.K. Park, G. Giuliani, R.L. Byer, Opt. Lett. 5, 030096 (1980)

    Article  ADS  Google Scholar 

  6. I.A. Rahn, R.L. Farrow, R.P. Lucht, Opt. Lett. 9, 060223 (1984)

    Article  ADS  Google Scholar 

  7. R.L. Farrow, L.A. Rahn, J. Opt. Soc. Am. B 2, 060903 (1985)

    Article  ADS  Google Scholar 

  8. O. Kinrot, I.S. Averbukh, Y. Prior, Phys. Rev. Lett. 75(21), 3822 (1995)

    Article  ADS  Google Scholar 

  9. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Science 254, 1178 (1991)

    Article  ADS  Google Scholar 

  10. R.H. Lehmberg, S.P. Obenschain, Opt. Commun. 46, 27 (1983)

    Article  ADS  Google Scholar 

  11. D. Véron, H. Ayral, C. Gouedard, D. Husson, J. Lauriou, O. Martin, B. Meyer, M. Rostaing, C. Sauteret, Opt. Commun. 65, 010042 (1988)

    Article  Google Scholar 

  12. J. Garnier, L. Videau, C. Gouédard, A. Migus, J. Opt. Soc. Am. B 15, 112773 (1998)

    Article  ADS  Google Scholar 

  13. Gratings spectrometer. Patent n° 13 57812

  14. D.J. Bradley, B. Liddy, W.E. Sleat, Opt. Commun. 2, 080391 (1971)

    Article  ADS  Google Scholar 

  15. D.J. Bradley, S.F. Bryant, J.R. Taylor, W. Sibbett, Rev. Sci. Instrum. 49, 020215 (1978)

    Article  ADS  Google Scholar 

  16. W. Friedman, S. Jackel, W. Seka, J. Zimmermann, Proc. SPIE 97, 544–548 (1976)

    ADS  Google Scholar 

  17. G. Ansett, R. Wallenstein, Appl. Phys. B 79, 827–836 (2004)

    Article  ADS  Google Scholar 

  18. R.W. Boyd, Nonlinear Optics (Elsevier, Amsterdam, 1992)

    Google Scholar 

  19. R. Diaz, M. Chambonneau, R. Courchinoux, P. Grua, J. Luce, J.-L. Rullier, J.-Y. Natoli, L. Lamaignère, Opt. Lett. 39, 030674 (2014)

    Article  ADS  Google Scholar 

  20. C. Gouedard, D. Husson, C. Sauteret, F. Auzel, A. Migus, J. Opt. Soc. Am. B 10, 122358 (1993)

    Article  ADS  Google Scholar 

  21. A. Stratan, A. Zorilla, L. Rusen, G. Nemes, Opt. Eng. 53(12), 122513 (2014)

    Article  ADS  Google Scholar 

  22. A. Tomita, Appl. Phys. Lett. 34, 070463 (1979)

    Article  ADS  Google Scholar 

  23. A.V. Smith, M.S. Bowers, J. Opt. Soc. Am. B 12, 010049 (1995)

    ADS  Google Scholar 

  24. J. Garnier, J. Math. Phys. 42, 041612 (2001)

    ADS  Google Scholar 

  25. J. Garnier, J. Math. Phys. 42, 041636 (2001)

    ADS  Google Scholar 

  26. R.S. Craxton, S.D. Jacobs, J.E. Rizzo, R. Boni, IEEE J. Quantum Electron. 17, 091782 (1981)

    ADS  Google Scholar 

  27. M.D. Skeldon, R.S. Craxton, T.J. Kessler, W. Seka, R.W. Short, S. Skupsky, J.M. Soures, IEEE J. Quantum Electron. 28, 051389 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Jérôme Ribolzi for his technical support bringing into operation the streak cameras and Jean-Luc Dubois for fruitful discussions about the interpretation of streak camera acquisitions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Diaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, R., Courchinoux, R., Luce, J. et al. Experimental evidence of temporal and spatial incoherencies of Q-switched Nd:YAG nanosecond laser pulses. Appl. Phys. B 121, 439–451 (2015). https://doi.org/10.1007/s00340-015-6251-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6251-5

Keywords

Navigation