Skip to main content
Log in

Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper presents a theoretical investigation of the optical properties of a three missing holes point-defect cavity implemented in a planar photonic crystal with various low refractive index cladding materials. To describe the cavity operation, we analyze how the refractive index (RI) of the cladding material depends on the Q factor and resonant wavelength for both asymmetric and symmetric structures. The results show that the radiation losses of the structures increase for decreasing RI contrast and that the Q factor drops dramatically. We show that the periodicity of the RI of the cladding material is a critical consideration for realizing symmetric structures with high-Q factors. Furthermore, we fine-tune the radius and position of the lateral-, upper-, and lower-boundary holes near the cavity edges, which allows us to increase the Q factor of the planar photonic crystal cavity by a factor as large as 25 (Q > 104). These findings provide useful design rules for applications involving mechanically stable photonic crystal cavities with high-Q factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S.H. Fan, P.R. Villeneuve, J.D. Joannopoulos, E.F. Schubert, High extraction efficiency of spontaneous emission from slabs of photonic crystals. Phys. Rev. Lett. 78, 3294–3297 (1997)

    Article  ADS  Google Scholar 

  2. D. Englund, D. Fattal, E. Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, J. Vučković, Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904-1–013904-4 (2005)

    Article  ADS  Google Scholar 

  3. O. Painter, R.K. Lee, A. Scherer, A. Yariv, J.D. O’Brien, P.D. Dapkus, I. Kim, Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999)

    Article  Google Scholar 

  4. M. Nomura, S. Iwamoto, K. Watanabe, N. Kumagai, Y. Nakata, S. Ishida, Y. Arakawa, Room temperature continuous-wave lasing in photonic crystal nanocavity. Opt. Express 14, 6308–6315 (2006)

    Article  ADS  Google Scholar 

  5. J. Hendrickson, B.C. Richards, J. Sweet, S. Mosor, C. Christenson, D. Lam, G. Khitrova, H.M. Gibbs, T. Yoshie, A. Scherer, O.B. Shchekin, D.G. Deppe, Quantum dot photonic-crystal-slab nanocavities: quality factors and lasing. Phys. Rev. B 72, 193303 (2005)

    Article  ADS  Google Scholar 

  6. M. Nomura, S. Iwamoto, M. Nishioka, S. Ishida, Y. Arakawa, Highly efficient optical pumping of photonic crystal nanocavity lasers using cavity resonant excitation. Appl. Phys. Lett. 89(16), 161111 (2006)

    Article  ADS  Google Scholar 

  7. H. Takano, B.-S. Song, T. Asano, S. Noda, Highly efficient multi-channel drop filter in a two-dimensional hetero photonic crystal. Opt. Express 14, 3491–3496 (2006)

    Article  ADS  Google Scholar 

  8. K. Nozaki, T. Tanabe, A. Shinya, S. Matsuo, T. Sato, H. Taniyama, M. Notomi, Sub-femtojoule all-optical switching using a photonic-crystal nanocavity. Nat. Photonics 4(7), 477–483 (2010)

    Article  ADS  Google Scholar 

  9. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H.M. Gibbs, G. Rupper, C. Ell, O.B. Shchekin, D.G. Deppe, Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432(7014), 200–203 (2004)

    Article  ADS  Google Scholar 

  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Falt, E.L. Hu, A. Imamoglu, Quantum nature of a strongly coupled single quantum dot-cavity system. Nature 445, 896–899 (2007)

    Article  ADS  Google Scholar 

  11. S. Strauf, K. Hennessy, M.T. Rakher, Y.-S. Choi, A. Badolato, L.C. Andreani, E.L. Hu, P.M. Petroff, D. Bouwmeester, Self-tuned quantum dot gain in photonic crystal lasers. Phys. Rev. Lett. 96, 127–404 (2006)

    Article  Google Scholar 

  12. W.-H. Chang, W.-Y. Chen, H.-S. Chang, T.-P. Hsieh, J.-I. Chyi, T.-M. Hsu, Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. Phys. Rev. Lett. 96(11), 117401 (2006)

    Article  ADS  Google Scholar 

  13. M. Borselli, T.J. Johnson, O. Painter, Measuring the role of surface chemistry in silicon microphotonics. Appl. Phys. Lett. 88(13), 131114 (2006)

    Article  ADS  Google Scholar 

  14. Y. Tanaka, T. Asano, R. Hatsuta, S. Noda, Investigation of point-defect cavity formed in two-dimensional photonic crystal slab with one-sided dielectric cladding. Appl. Phys. Lett. 88, 011112 (2006)

    Article  ADS  Google Scholar 

  15. M. Okano, T. Yamada, J. Sugisaka, N. Yamamoto, M. Itoh, T. Sugaya, K. Komori, M. Mori, Design of two-dimensional photonic crystal nanocavities with low-refractive-index material cladding. J. Opt. 12, 015108 (2010)

    Article  ADS  Google Scholar 

  16. S.-W. Jeon, J.-K. Han, B.-S. Song, S. Noda, Glass-embedded two-dimensional silicon photonic crystal devices with a broad bandwidth waveguide and a high quality nanocavity. Opt. Express 18, 19361–19366 (2010)

    Article  ADS  Google Scholar 

  17. E. Kuramochi, H. Taniyama, T. Tanabe, K. Kawasaki, Y.-G. Roh, M. Notomi, Ultrahigh-Q one-dimensional photonic crystal nanocavities with modulated mode-gap barriers on SiO2 claddings and on air claddings. Opt. Express 18, 15859–15869 (2010)

    Article  ADS  Google Scholar 

  18. B.-S. Song, S.-W. Jeon, S. Noda, Symmetrically glass-clad photonic crystal nanocavities with ultrahigh quality factors. Opt. Lett. 36, 91–93 (2011)

    Article  ADS  Google Scholar 

  19. Z. Han, X. Checoury, L.-D. Haret, P. Boucaud, High quality factor in a two-dimensional photonic crystal cavity on silicon-on-insulator. Opt. Lett. 36, 1749–1751 (2011)

    Article  ADS  Google Scholar 

  20. X. Gai, B. Luther-Davies, T.P. White, Photonic crystal nanocavities fabricated from chalcogenide glass fully embedded in an index-matched cladding with a high Q factor (>750,000). Opt. Express 20, 15503–15515 (2012)

    Article  ADS  Google Scholar 

  21. K. Welnaa, M. Huguesb, C. P. Reardona, L. O’Faolaina, M. Hopkinsonb, T. F. Kraussa, Photonic crystal nanocavities in GaAs/AlGaAs with oxidised bottom cladding. Photonics Nanostruct. Fundam. Appl. 11(2), 139–144 (2013)

    Article  ADS  Google Scholar 

  22. L. Kassa-Baghdouche, T. Boumaza, M. Bouchemat, Planar photonic crystal nanocavities with symmetric cladding layers for integrated optics. Opt. Eng. 53(12), 127107 (2014)

    Article  ADS  Google Scholar 

  23. L. Kassa-Baghdouche, T. Boumaza, M. Bouchemat, Optimization of Q-factor in nonlinear planar photonic crystal nanocavity incorporating hybrid silicon/polymer material. Phys. Scr. 90, 065504 (2015)

    Article  ADS  Google Scholar 

  24. T. Asano, W. Kunishi, B.-S. Song, S. Noda, Time-domain response of point-defect cavities in two dimensional photonic crystal slabs using picosecond light pulse. Appl. Phys. Lett. 88, 151102 (2006)

    Article  ADS  Google Scholar 

  25. M. Nomura, S. Iwamoto, T. Yang, S. Ishida, Y. Arakawa, Enhancement of light emission from single quantum dot in photonic crystal nanocavity by using cavity resonant excitation. Appl. Phys. Lett. 89(24), 241124 (2006)

    Article  ADS  Google Scholar 

  26. S.G. Johnson, S. Fan, P.R. Villeneuve, J.D. Joannopoulos, L. Kolodziejski, Guided modes in photonic crystal slabs. Phys. Rev. B 60(8), 5751–5758 (1999)

    Article  ADS  Google Scholar 

  27. S. Johnson, J.D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Opt. Express 8, 173–190 (2001)

    Article  ADS  Google Scholar 

  28. Y. Akahane, T. Asano, B.S. Song, S. Noda, High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003)

    Article  ADS  Google Scholar 

  29. Y. Akahane, T. Asano, B.S. Song, S. Noda, Fine-tuned high Q photonic crystal nanocavity. Opt. Express 13, 1202–1214 (2005)

    Article  ADS  Google Scholar 

  30. Y. Lai, S. Pirotta, G. Urbinati, D. Gerace, M. Minkov, V. Savona, A. Badolato, M. Galli, Genetically designed L3 photonic crystal nanocavities with measured quality factor exceeding one million. Appl. Phys. Lett. 104, 241101 (2014)

    Article  ADS  Google Scholar 

  31. Momchil Minkov, V. Savona, Automated optimization of photonic crystal slab cavities. Sci. Rep. 4, 5124 (2014)

    Article  ADS  Google Scholar 

  32. A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Norwood, 2005)

    Google Scholar 

  33. A.F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, MEEP: a flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010)

    Article  ADS  MATH  Google Scholar 

  34. V.A. Mandelshtam, H.S. Taylor, Harmonic inversion of time signals. J. Chem. Phys. 107, 6756–6769 (1997)

    Article  ADS  Google Scholar 

  35. H.-Y. Ryu, H.-G. Park, Y.-H. Lee, Two-dimensional photonic crystal semiconductor lasers: computational design, fabrication, and characterization. IEEE J. Sel. Top. Quantum Electron. 8(4), 891–908 (2002)

    Article  Google Scholar 

  36. H.-Y. Ryu, J.-K. Hwang, Y.-H. Lee, Conditions of single guided mode in two dimensional triangular photonic crystal slab waveguides. J. Appl. Phys. 88(9), 4941–4946 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the MIT ab initio group for allowing us to use their computation package and to Eric Cassan from University of Paris-Sud, Orsay, France, for scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lazhar Kassa-Baghdouche.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kassa-Baghdouche, L., Boumaza, T. & Bouchemat, M. Optical properties of point-defect nanocavity implemented in planar photonic crystal with various low refractive index cladding materials. Appl. Phys. B 121, 297–305 (2015). https://doi.org/10.1007/s00340-015-6229-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6229-3

Keywords

Navigation