Skip to main content
Log in

Second-harmonic frequency-resolved optical gating covering two and a half optical octaves using a single spectrometer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the measurement of laser pulse shapes covering the range 580–3250 nm using second-harmonic generation frequency-resolved optical gating equipped with a single inexpensive visible-NIR miniature spectrometer and a single pair of homemade broadband beam splitters. Our experimental scheme exploits frequency up-conversion by BBO crystals and appropriate corrections for dispersion, beam splitter filtering and phase-matching efficiency. The signal and idler waves from a commercial optical parametric amplifier pumped by a Ti:Sapphire laser (26 fs, 1 kHz) have been characterized as well as their second harmonic. The pulse shapes out of a commercial difference frequency generation module mixing signal and idler have also been measured up to 3250 nm. The resulting pulses range from 20 to 120 fs, and their chirp characteristics are also exposed. Our approach is demonstrated over most of the doubling crystal transparency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. Trebino, K.W. DeLong, D.N. Fittinghoff, J.N. Sweetser, M.A. Krumbugel, B.A. Richman, D.J. Kane, Rev. Sci. Instrum. 68, 3277–3295 (1997)

    Article  ADS  Google Scholar 

  2. D.J. Kane, R. Trebino, IEEE J. Quantum Electron. 29, 571–579 (1993)

    Article  ADS  Google Scholar 

  3. G. Stibenz, G. Steinmeyer, IEEE J. Sel. Top. Quantum Electron. 12, 286–296 (2006)

    Article  Google Scholar 

  4. Y. Mairesse, F. Quéré, Phys. Rev. A 71, 011401(R) (2005)

    Article  ADS  Google Scholar 

  5. Q. Cao, X. GU, E. Zeek, M. Kimmel, R. Trebino, J. Dudley, R.S. Windeler, Appl. Phys. B 77, 239–244 (2003)

    Article  ADS  Google Scholar 

  6. C. Iaconis, I.A. Walmsley, Opt. Lett. 23, 792–794 (1998)

    Article  ADS  Google Scholar 

  7. C. Iaconis, I.A. Walmsley, IEEE J. Quantum Electron. 35, 501–509 (1999)

    Article  ADS  Google Scholar 

  8. E.M. Kosik, A.S. Radunsky, I.A. Walmsley, C. Dorrer, Opt. Lett. 30, 326–328 (2005)

    Article  ADS  Google Scholar 

  9. D.J. Kane, R. Trebino, Opt. Lett. 18, 823–825 (1993)

    Article  ADS  Google Scholar 

  10. J. Ratner, G. Steinmeyer, T.C. Wong, R. Bartels, R. Trwbino, Opt. Lett. 37, 2874–3876 (2014)

    Article  ADS  Google Scholar 

  11. A. Baltuska, M.S. Pshenichnikov, D.A. Wiersma, IEEE J. Quantum Electron. 35, 459–478 (1999)

    Article  ADS  Google Scholar 

  12. K. Kato, IEEE J. Quantum Electron. QE–22, 1013–1014 (1986)

    Article  ADS  Google Scholar 

  13. P.E. Ciddor, Appl. Opt. 35, 1566–1573 (1996)

    Article  ADS  Google Scholar 

  14. I.H. Malitson, J. Opt. Soc. Am. 55, 1205–1208 (1965)

    Article  ADS  Google Scholar 

  15. N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, M. Price-Gallagher, C. Fletcher, O. Mamer, A. Lesimple, K. Johnson, Appl. Phys. Lett. 92, 011131 (2008)

    Article  ADS  Google Scholar 

  16. E. Matsubara, M. Nagai, M. Ashida, J. Opt. Soc. Am. B 30, 1627 (2013)

    Article  ADS  Google Scholar 

  17. C. Marceau, S. Thomas, Y. Kassimi, G. Gingras, B. Witzel, Appl. Phys. Lett. 104, 051122 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

All authors acknowledge technical support from Mario Martin and Florent Pouliot. B.W. acknowledges the financial support of Canada Foundation for Innovation (No. 21446), Natural Sciences and Engineering Research Council of Canada (No. 2177176) and Fonds de recherche du Québec - Nature et Technologies (No. 167238). C.M. acknowledges financial support from NSERC Postgraduate Scholarship (No. 90465102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Marceau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marceau, C., Thomas, S., Kassimi, Y. et al. Second-harmonic frequency-resolved optical gating covering two and a half optical octaves using a single spectrometer. Appl. Phys. B 119, 339–345 (2015). https://doi.org/10.1007/s00340-015-6071-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-015-6071-7

Keywords

Navigation