Skip to main content
Log in

Polymeric fiber sensor for sensitive detection of carbon dioxide based on apodized wavelength modulation spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The performance of an optical sensor that employs an unbuffered polydimethylsiloxane (PDMS)-cladding fiber optic is demonstrated for the sensitive detection of CO2 gas in the near-infrared region for around 1.57 µm using the apodized 2f/1f wavelength modulation spectroscopy method. The permeability and diffusion characteristics of the PDMS fiber have been theoretically examined and numerically simulated. The results of the simulation are verified by an experimental setup containing a DFB laser source and 5-m-coiled unbuffered PDMS fiber placed in a pre-vacuumed cell filled with about 980 ± 10 Torr of pure CO2 gas. A minimum detectable absorption of ~0.9 × 10−4 is measured, corresponding to a detection sensitivity of ~4.5 × 10−11 \({\text{cm}}^{ - 1} /{\text{Hz}}^{1/2}\). The effect of the scaling k-factor on the apodized signal is subsequently studied, showing close agreement between the simulation and experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. B.D. Gupta, A. Sharma, C.D. Singh, Fiber optic evanescent field absorption sensor: effect of launching condition and the geometry of the sensing region. Opt. Eng. 33(6), 1864–1868 (1994)

    Article  ADS  Google Scholar 

  2. A. Messica, A. Greenstein, A. Katzir, Theory of fiber-optic, evanescent-wave spectroscopy and sensors. Appl. Opt. 35(13), 2274–2284 (1996)

    Article  ADS  Google Scholar 

  3. M.S. John et al., A fibre optic evanescent wave sensor for monitoring the rate of pulsed laser deposition of metal thin films. Meas. Sci. Technol. 10(2), N17 (1999)

    Article  Google Scholar 

  4. S.T. Lee et al., Evanescent wave fibre optic sensors for trace analysis of Fe3+ in water. Meas. Sci. Technol. 14(6), 858 (2003)

    Article  ADS  Google Scholar 

  5. R. Orghici et al., Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water. Appl. Phys. B 90(2), 355–360 (2008)

    Article  ADS  Google Scholar 

  6. A. Khorsandi, S. Shojaei, F. Hosseinibalam, Second-harmonic laser-coupled optical fiber sensor for pH measurement and corrosion detection based on evanescent field absorption. Opt. Laser Technol. 44(5), 1564–1569 (2012)

    Article  ADS  Google Scholar 

  7. G. Powell et al., In-situ cure monitoring using optical fibre sensors—a comparative study. Smart Mater. Struct. 7(4), 557 (1998)

    Article  ADS  Google Scholar 

  8. A. Grazia, M. Riccardo, F.L. Ciaccheri, Evanescent wave absorption spectroscopy by means of bi-tapered multimode optical fibers. Appl. Spectrosc. 52(4), 546–551 (1998)

    Article  ADS  Google Scholar 

  9. P. Moar et al., Fabrication, modeling, and direct evanescent field measurement of tapered optical fiber sensors. J. Appl. Phys. 85(7), 3395–3398 (1999)

    Article  ADS  Google Scholar 

  10. K. Li, J. Meichsner, In situ infrared fibre evanescent wave spectroscopy as a diagnostic tool for plasma polymerization in a gas discharge. J. Phys. D Appl. Phys. 34(9), 1318 (2001)

    Article  ADS  Google Scholar 

  11. M. Kraft et al., Sensor head development for mid-infrared fibre-optic underwater sensors. Meas. Sci. Technol. 13(8), 1294 (2002)

    Article  ADS  Google Scholar 

  12. Lu, J., et al. Theoretical analysis of fiber-optic evanescent wave sensors, in Microwave Conference, 2008 China-Japan Joint. (IEEE, 2008)

  13. A. Millo, Y. Raichlin, A. Katzir, Mid-infrared fiber-optic attenuated total reflection spectroscopy of the solid–liquid phase transition of water. Appl. Spectrosc. 59(4), 460–466 (2005)

    Article  ADS  Google Scholar 

  14. Z. Hammody et al., Potential of ‘flat’fibre evanescent wave spectroscopy to discriminate between normal and malignant cells in vitro. J. Microsc. 228(2), 200–210 (2007)

    Article  MathSciNet  Google Scholar 

  15. S. Yu et al., In vitro glucose measurement using tunable mid-infrared laser spectroscopy combined with fiber-optic sensor. Biomed. Opt. Express 5(1), 275–286 (2014)

    Article  Google Scholar 

  16. F. De-Jun et al., Refractive index sensor based on plastic optical fiber with tapered structure. Appl. Opt. 53(10), 2007–2011 (2014)

    Article  ADS  Google Scholar 

  17. Zheng, S., Y. Zhu, and S. Krishnaswamy. Tunable fiber ring laser absorption spectroscopic sensors for gas detection, in SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring. (International Society for Optics and Photonics, 2013)

  18. L. Mescia et al., Design of silica-based photonic crystal fiber for biosensing applications. J. Noncryst. Solids 355(18), 1163–1166 (2009)

    Article  ADS  Google Scholar 

  19. J. Luo et al., A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection. Sensors 13(3), 3986–3997 (2013)

    Article  Google Scholar 

  20. L. Mescia, F. Prudenzano, Advances on optical fiber sensors. Fibers 2(1), 1–23 (2013)

    Article  Google Scholar 

  21. R. Krska et al., Fiber optic sensor for chlorinated hydrocarbons in water based on infrared fibers and tunable diode lasers. Appl. Phys. Lett. 63(14), 1868–1870 (1993)

    Article  ADS  Google Scholar 

  22. P. Hahn et al., Detection of hydrocarbons in water by MIR evanescent-wave spectroscopy with flattened silver halide fibers. Appl. Spectrosc. 55(1), 39–43 (2001)

    Article  ADS  Google Scholar 

  23. D.S. Blair, L.W. Burgess, A.M. Brodsky, Study of analyte diffusion into a silicone-clad fiber-optic chemical sensor by evanescent wave spectroscopy. Appl. Spectrosc. 49(11), 1636–1645 (1995)

    Article  ADS  Google Scholar 

  24. T. Merkel et al., Gas sorption, diffusion, and permeation in poly (dimethylsiloxane). J. Polym. Sci. Part B Polym. Phys. 38(3), 415–434 (2000)

    Article  ADS  Google Scholar 

  25. W. Robb, Thin silicone membranes-their permeation properties and some applications. Ann. N. Y. Acad. Sci. 146(1), 119–137 (1968)

    Article  ADS  Google Scholar 

  26. A. D’Orazio et al., Design of planar optic sensors for hydrocarbon detection. Opt. Quant. Electron. 36(6), 507–526 (2004)

    Article  Google Scholar 

  27. F. Prudenzano et al., Design of an optical sensor array for hydrocarbon monitoring. Opt. Quant. Electron. 41(1), 55–68 (2009)

    Article  Google Scholar 

  28. R. St-Gelais et al., Gas sensing using polymer-functionalized deformable Fabry–Perot interferometers. Sens. Actuators B Chem 182, 45–52 (2013)

    Article  Google Scholar 

  29. S.H. Salati, A. Khorsandi, Apodized 2f/1f wavelength modulation spectroscopy method for calibration-free trace detection of carbon monoxide in the near-infrared region: theory and experiment. Appl. Phys. B  116, 521–531 (2014)

    Article  ADS  Google Scholar 

  30. B.D. Gupta, B.D. Gupta, Fiber optic sensors: principles and applications (New India Publishing Agency, New Delh, 2006)

    Google Scholar 

  31. V. Ruddy, B. MacCraith, J. Murphy, Evanescent wave absorption spectroscopy using multimode fibers. J. Appl. Phys. 67(10), 6070–6074 (1990)

    Article  ADS  Google Scholar 

  32. A.W. Snyder, J. Love, Optical waveguide theory (Springer, Berlin, 1983)

    Google Scholar 

  33. A. Ghatak, K. Thyagarajan, An Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998)

    Book  Google Scholar 

  34. Y. Xu, A. Cottenden, N.B. Jones, A theoretical evaluation of fibre-optic evanescent wave absorption in spectroscopy and sensors. Opt. Lasers Eng. 44(2), 93–101 (2006)

    Article  Google Scholar 

  35. A. Leung, P.M. Shankar, R. Mutharasan, A review of fiber-optic biosensors. Sens. Actuators B Chem. 125(2), 688–703 (2007)

    Article  Google Scholar 

  36. P. Tremblay et al., Gas permeability, diffusivity and solubility of nitrogen, helium, methane, carbon dioxide and formaldehyde in dense polymeric membranes using a new on-line permeation apparatus. J. Membr. Sci. 282(1), 245–256 (2006)

    Article  MathSciNet  Google Scholar 

  37. S. Charati, S. Stern, Diffusion of gases in silicone polymers: molecular dynamics simulations. Macromolecules 31(16), 5529–5535 (1998)

    Article  ADS  Google Scholar 

  38. HITRAN on the web. 2014

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Khorsandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jozdani, M.M., Khorsandi, A. & Sabouri, S.G. Polymeric fiber sensor for sensitive detection of carbon dioxide based on apodized wavelength modulation spectroscopy. Appl. Phys. B 118, 219–229 (2015). https://doi.org/10.1007/s00340-014-5973-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5973-0

Keywords

Navigation