Skip to main content
Log in

Polarization evolution characteristics of focused hybridly polarized vector fields

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We investigate the focusing property and the polarization evolution characteristics of hybridly polarized vector fields in the focal region. Three types of hybridly polarized vector fields, namely azimuthal-variant hybridly polarized vector field, radial-variant hybridly polarized vector field, and spatial-variant hybridly polarized vector field, are experimentally generated. The intensity distributions and the polarization evolution of these hybridly polarized vector fields focused under low numerical aperture (NA) are experimentally studied and good agreements with the numerical simulations are obtained. The three-dimensional (3D) state of polarization and the field distribution within the focal volume of these hybridly polarized vector fields under high-NA focusing are studied numerically. The optical curl force on Rayleigh particles induced by tightly focused hybridly polarized vector fields, which results in the orbital motion of trapped particles, is analyzed. Simulation results demonstrate that polarization-only modulation provided by the hybridly polarized vector field allows one to control both the intensity distribution and 3D elliptical polarization in the focal region, which may find interesting applications in particle trapping, manipulation, and orientation analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Q. Zhan, Trapping metallic Rayleigh particles with radial polarization. Opt. Express 12, 3377–3382 (2004)

    Article  ADS  Google Scholar 

  2. C. Hnatovsky, V. Shvedov, W. Krolikowski, A. Rode, Revealing local field structure of focused ultrafast pulses. Phys. Rev. Lett. 106, 123901 (2011)

    Article  ADS  Google Scholar 

  3. G. Bautista, M.J. Huttunen, J. Mäkitalo, J.M. Kontio, J. Simonen, M. Kauranen, Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams. Nano Lett. 12, 3207–3212 (2012)

    Article  Google Scholar 

  4. S.M. Li, Y. Li, X.L. Wang, L.J. Kong, K. Lou, C. Tu, Y. Tian, H.T. Wang, Taming the collapse of optical fields. Sci. Rep. 2, 1007 (2012)

    ADS  Google Scholar 

  5. J.T. Barreiro, T.C. Wei, P.G. Kwiat, Remote preparation of single-photon “hybrid” entangled and vector-polarization states. Phys. Rev. Lett. 105, 030407 (2010)

    Article  ADS  Google Scholar 

  6. L. Novotny, M.R. Beversluis, K.S. Youngworth, T.G. Brown, Longitudinal field modes probed by single molecules. Phys. Rev. Lett. 86, 5251–5254 (2001)

    Article  ADS  Google Scholar 

  7. K.G. Lee, H.W. Kihm, J.E. Kihm, W.J. Choi, H. Kim, C. Ropers, D.J. Park, Y.C. Yoon, S.B. Choi, D.H. Woo, J. Kim, B. Lee, Q.H. Park, C. Lienau, D.S. Kim, Vector field microscopic imaging of light. Nat. Photon. 1, 53–56 (2007)

    Article  ADS  Google Scholar 

  8. X. Li, T.H. Lan, C.H. Tien, M. Gu, Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam. Nat. Commun. 3, 998 (2012)

    Article  ADS  Google Scholar 

  9. K.S. Youngworth, T.G. Brown, Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000)

    Article  ADS  Google Scholar 

  10. Q.W. Zhan, Cylindrical vector beams: from mathematical concepts to applications. Adv. Opt. Photon. 1, 1–57 (2009)

    Article  Google Scholar 

  11. B. Gu, J.L. Wu, Y. Pan, Y. Cui, Controllable vector bottle-shaped fields generated by focused spatial-variant linearly polarized vector beams. Appl. Phys. B 113, 165–170 (2013)

    Article  ADS  Google Scholar 

  12. J. Arlt, M.J. Padgett, Generation of a beam with a dark focus surrounded by regions of higher intensity: the optical bottle beam. Opt. Lett. 25, 191–193 (2000)

    Article  ADS  Google Scholar 

  13. Y. Kozawa, S. Sato, Focusing property of a double-ring-shaped radially polarized beam. Opt. Lett. 31, 820–822 (2006)

    Article  ADS  Google Scholar 

  14. X.L. Wang, J. Ding, J.Q. Qin, J. Chen, Y.X. Fan, H.T. Wang, Configurable three-dimensional optical cage generated from cylindrical vector beams. Opt. Commun. 282, 3421–3425 (2009)

    Article  ADS  Google Scholar 

  15. Y. Zhao, Q. Zhan, Y. Zhang, Y.P. Li, Creation of a three-dimensional optical chain for controllable particle delivery. Opt. Lett. 30, 848–850 (2005)

    Article  ADS  Google Scholar 

  16. H.F. Wang, L.P. Shi, B. Lukyanchuk, C. Sheppard, C.T. Chong, Creation of a needle of longitudinally polarized light in vacuum using binary optics. Nat. Photon. 2, 501–505 (2008)

    Article  Google Scholar 

  17. K. Hu, Z. Chen, J. Pu, Generation of super-length optical needle by focusing hybridly polarized vector beams through a dielectric interface. Opt. Lett. 37, 3303–3305 (2012)

    Article  ADS  Google Scholar 

  18. B. Gu, J.L. Wu, Y. Pan, Y. Cui, Achievement of needle-like focus by engineering radial-variant vector fields. Opt. Express 21, 30444–30452 (2013)

    Article  ADS  Google Scholar 

  19. B. Gu, Y. Pan, J.L. Wu, Y. Cui, Manipulation of radial-variant polarization for creating tunable bifocusing spots. J. Opt. Soc. Am. A 31, 253–257 (2014)

    Article  ADS  Google Scholar 

  20. G.M. Lerman, L. Stern, U. Levy, Generation and tight focusing of hybridly polarized vector beams. Opt. Express 18, 27650–27657 (2010)

    Article  ADS  Google Scholar 

  21. X.L. Wang, Y.N. Li, J. Chen, C.S. Guo, J.P. Ding, H.T. Wang, A new type of vector fields with hybrid states of polarization. Opt. Express 18, 10786–10795 (2010)

    Article  ADS  Google Scholar 

  22. W. Han, W. Cheng, Q. Zhan, Flattop focusing with full Poincare beams under low numerical aperture illumination. Opt. Lett. 36, 1605–1607 (2011)

    Article  ADS  Google Scholar 

  23. X.L. Wang, J. Chen, Y.N. Li, J.P. Ding, C.S. Guo, H.T. Wang, Optical orbital angular momentum from the curl of polarization. Phys. Rev. Lett. 105, 253602 (2010)

    Article  ADS  Google Scholar 

  24. L.G. Wang, Optical forces on submicron particles induced by full Poincaré beams. Opt. Express 20, 20814–20826 (2012)

    Article  ADS  Google Scholar 

  25. K. Hu, Z. Chen, J. Pu, Tight focusing properties of hybridly polarized vector beams. J. Opt. Soc. Am. A 29, 1099–1104 (2012)

    Article  ADS  Google Scholar 

  26. H. Hu, P. Xiao, The tight focusing properties of spatial hybrid polarization vector beam. Optik 124, 2406–2410 (2013)

    Article  Google Scholar 

  27. X.L. Wang, J.P. Ding, W.J. Ni, C.S. Guo, H.T. Wang, Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement. Opt. Lett. 32, 3549–3551 (2007)

    Article  ADS  Google Scholar 

  28. B. Richards, E. Wolf, Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system. Proc. R. Soc. A 253, 358–379 (1959)

    Article  ADS  MATH  Google Scholar 

  29. M. Rashid, O.M. Maragò, P.H. Jones, Focusing of high order cylindrical vector beams. J. Opt. A Pure Appl. Opt. 11, 065204 (2009)

    Article  ADS  Google Scholar 

  30. H. Chen, Z. Zheng, B.F. Zhang, J. Ding, H.T. Wang, Polarization structuring of focused field through polarization-only modulation of incident beam. Opt. Lett. 35, 2825–2827 (2010)

    Article  Google Scholar 

  31. A.F. Abouraddy, K.C. Toussaint Jr, Three-dimensional polarization control in microscopy. Phys. Rev. Lett. 96, 153901 (2006)

    Article  ADS  Google Scholar 

  32. W. Chen, Q. Zhan, Diffraction limited focusing with controllable arbitrary three-dimensional polarzation. J. Opt. 12, 045707 (2010)

    Article  ADS  Google Scholar 

  33. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986)

    Article  ADS  Google Scholar 

  34. Z. Liu, D. Zhao, Optical trapping Rayleigh dielectric spheres with focused anomalous hollow beams. Appl. Opt. 52, 1310–1316 (2013)

    Article  ADS  Google Scholar 

  35. S. Albaladejo, M.I. Marqués, M. Laroche, J.J. Sáenz, Scattering forces from the curl of the spin angular momentum of a light field. Phys. Rev. Lett. 102, 113602 (2009)

    Article  ADS  Google Scholar 

  36. B.T. Draine, The discrete-dipole approximation and its application to interstellar graphite grains. Astrophys. J. 333, 848–872 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China (Grant: 11174160) and the Program for New Century Excellent Talents in University (NCET-10-0503).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiping Cui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, B., Pan, Y., Rui, G. et al. Polarization evolution characteristics of focused hybridly polarized vector fields. Appl. Phys. B 117, 915–926 (2014). https://doi.org/10.1007/s00340-014-5909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5909-8

Keywords

Navigation