Skip to main content
Log in

Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new method for determining the fluorophore distribution along the propagation axis of an ultrashort optical pulse is presented. The axial resolution is obtained by temporal gating of the backward emitted fluorescence via optical parametric amplification, and we demonstrated a resolution in the order of a few 100 μm. With this approach, sampling of the fluorophore concentration of thin layers without using optics with a large numerical aperture will be possible, such as investigating the human retina via time-resolved fluorescence measurements. Additionally, we verified the gain is orders of magnitude higher for coherent seeding, making optical parametric gating very interesting for discriminating between coherently and incoherently scattered light for other multimodal imaging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Schweitzer, A. Kolb, M. Hammer, R. Anders, Der Ophthalmol. 99, 774–779 (2002)

    Article  Google Scholar 

  2. M. Hammer, E. Nagel, D. Schweitzer, S. Richter, F. Schweitzer, E. Königsdörffer, J. Strobel, Der Ophthalmol. 101, 1189–1193 (2004)

    Article  Google Scholar 

  3. D. Schweitzer, B. Beuermann, M. Hammer, F. Schweitzer, S. Richter, L. Leistritz, M. Scibor, E. Thamm, A. Kolb, E. Anders, Klinisches Monatsblatt Augenheilkunde 222, 396–408 (2005)

    Article  Google Scholar 

  4. M. Hammer, E. Königsdörffer, C. Liebermann, C. Framme, G. Schuch, D. Schweitzer, J. Strobel, Graefe’s Arch. Clin.Exp. Ophthalmol. 246, 105–114 (2008)

    Article  Google Scholar 

  5. B.R. Masters, Confocal Microscopy and Multiphoton Excitation Microscopy: The Genesis of Live Cell Imaging (SPIE Press Monograph, Bellingham, 2006), p. 230

    Book  Google Scholar 

  6. M. Yanoff, J.S. Duker, Ophthalmology, 2nd edn. (Mosby/Elsevier, Philadelphia, 2004)

    Google Scholar 

  7. G. Saxby, The Science of Imaging, 2nd edn. (CRC Press, Boca Raton, 2011)

    Google Scholar 

  8. J. Pawley, Handbook of Biological Confocal Microscopy, 3rd edn. (Springer Science, New York, 2010)

    Google Scholar 

  9. W. Drexler, Optical Coherence Tomography (Springer, New York, 2008)

    Book  Google Scholar 

  10. M. de Groot, C.L. Evans, J.F. de Boer, Opt. Express 20, 15253–15262 (2012)

    Article  ADS  Google Scholar 

  11. J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, New York, 2006)

    Book  Google Scholar 

  12. A.C. Bhasikuttan, T. Okada, J. Phys. Chem. B 108, 12629–12632 (2004)

    Article  Google Scholar 

  13. R. Schanz, S.A. Kovalenko, Kharlanov, N.P. Ernsting, Appl. Phys. Lett. 79, 566–568 (2001)

  14. L. Zhao, J.L. Pérez, Lustres, Farztdinov, N.P. Ernsting, Phys. Chem. Chem. Phys. 7, 1716–1725 (2005)

  15. M.O. Lenz, R. Huber, B. Schmidt, P. Gilch, R. Kalmbach, M. Engelhard, J. Wachtveitl, Biophys. J. 91, 255–262 (2006)

    Article  ADS  Google Scholar 

  16. U. Förster, N. Gildenhoff, C. Grünewald, J.W. Engels, J. Wachtveitl, J. Lumin. 129, 1454–1458 (2009)

    Article  Google Scholar 

  17. X.-X. Zhang, C. Würth, L. Zhao, U. Resch-Genger, N.P. Ernsting, M. Sajadi, Rev. Sci. Inst. 82, 063108–1–063108–8 (2011)

    Google Scholar 

  18. I. Martini, G.V. Hartland, Chem. Phys. Lett. 258, 180–186 (1996)

    Article  ADS  Google Scholar 

  19. S. Akimoto, I. Yamazaki, S. Takaichi, M. Mimoru, Chem. Phys. Lett. 313, 63–68 (1999)

    Article  ADS  Google Scholar 

  20. P. Fita, Y. Stepanenko, C. Radzewicz, Appl. Phys. Lett. 86, 021909–1–021909–2 (2005)

    Article  Google Scholar 

  21. X.-F. Han, X.-H. Chen, Y.-X. Weng, J.-Y. Zhang, J. Opt. Soc. Am. B 24, 1633–1638 (2007)

    Article  ADS  Google Scholar 

  22. H. Chen, Y. Weng, J. Zhang, J. Opt. Soc. Am. B 26, 1627–1634 (2009)

    Article  ADS  Google Scholar 

  23. H.-L. Chen, Y.-X. Weng, X.-Y. Li, Chin. J. Chem. Phys. 24, 253–255 (2011)

    Article  Google Scholar 

  24. H. Chen, W. Dang, J. Xie, J. Zhao, Y. Weng, Photosynth. Res. 111, 81–86 (2012)

    Article  Google Scholar 

  25. P. Fita, C. Radzewicz, J. Opt. Soc. Am. B 25, 1625–1626 (2008)

    Article  ADS  Google Scholar 

  26. D. Schweitzer, M. Klemm, M. Hammer, S. Jentsch, F. Schweitzer, Proc. SPIE 7368, 736804 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge support from the European Regional Development Fund (EFRE) and the state of Thuringia (TMBWK). Furthermore, we thank Dr. Schweitzer from the Department of Ophthalmology for bringing our attention to this interesting topic. We also acknowledge experimental support from Dr. Schweitzer and his coworkers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian G. O. Gräfe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (docx 12 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gräfe, M.G.O., Hoffmann, A. & Spielmann, C. Ultrafast fluorescence spectroscopy for axial resolution of flurorophore distributions. Appl. Phys. B 117, 833–840 (2014). https://doi.org/10.1007/s00340-014-5894-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00340-014-5894-y

Keywords

Navigation