Skip to main content
Log in

The ceramics based on (Bi0.5Li0.5)0.9Sr0.1ZrO3-doped K0.44Na0.55Ag0.01Nb0.95Ta0.05O3 exhibit enhanced structural and electric properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Currently, in the modification methods of K0.5Na0.5NbO3(KNN) ceramics to enhance their piezoelectric performance, key parameters such as Curie temperature are usually sacrificed. However, this trade-off limits the practical application of piezoelectric materials. Thus, addressing the trade-off between different performance parameters of piezoelectric ceramics becomes a major challenge.The present research employs the conventional solid phase sintering process and utilizes controlled doping of (Bi0.5Li0.5)0.9Sr0.1ZrO3 to regulate the ceramic system, K0.44Na0.55Ag0.01Nb0.95Ta0.05O3, at its polycrystalline phase boundary, thereby achieving a trade-off between performance. The ceramic samples of the system formed a compact solid solution with a single-phase perovskite structure and formed orthorhombic-tetragonal and rhombohedral-tetragonal polycrystalline phase boundaries at 0.02 ≤ x ≤ 0.03 and 0.035 ≤ x ≤ 0.06, respectively, according to XRD, SEM, and EDS analysis. The electrical properties test results show that in the multiphase coexisting region of x = 0.035, the ceramics of the system show excellent electrical properties, respectively d33 = 312 pC/N, kp = 46.5%, εr = 1019, tanδ = 3.78%, Pr = 20.08 μC/cm2, Ec = 12.97 kV/cm, and TC = 342 ℃. These results show that the properties of the system ceramics have reached a relatively high level, which provides an effective strategy for the practical application of piezoelectric ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable.

References

  1. A. Rahman, M.S. Alkathy, M. Habib, J.U. Rahman, F.L. Zabotto, F.P. Milton, A. Strabello, S. Lee, J.A. Eiras, Enhanced ferroelectric, piezoelectric, and dielectric properties in potassium sodium niobate lead-free piezoelectric ceramics by constructing of multiple phase boundaries. J. Alloy. Compd. 936, 168220 (2023). https://doi.org/10.1016/j.jallcom.2022.168220

    Article  Google Scholar 

  2. W. Yang, P. Li, S. Wu, F. Li, B. Shen, J. Zhai, Coexistence of excellent piezoelectric performance and thermal stability in KNN-based lead-free piezoelectric ceramics. Ceram. Int. 46, 1390–1395 (2020). https://doi.org/10.1016/j.ceramint.2019.09.102

    Article  Google Scholar 

  3. N. Zhang, T. Zheng, J. Wu, Lead-free (K, Na)NbO3-based materials: preparation techniques and piezoelectricity. ACS Omega. 5, 3099–3107 (2020). https://doi.org/10.1021/acsomega.9b03658

    Article  Google Scholar 

  4. R. Zheng, Q. Yin, H. Cheng, X. Zhang, K. Hu, F. Lin, Y. Zhang, S. Wang, Z. Zhang, Q. Zhang, The effect of (Bi0.5Li0.5)0.9Sr0.1ZrO3 substitution on the construction of polymorphic phase boundary and high curie temperature of K0.45Na0.55NbO3 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 34, 954 (2023). https://doi.org/10.1007/s10854-023-10305-0

    Article  Google Scholar 

  5. Q. Li, Q. Zhang, W. Cai, C. Zhou, R. Gao, G. Chen, X. Deng, Z. Wang, C. Fu, Enhanced ferroelectric and piezoelectric responses of (Ba0.85Ca0.15)(Zr0.1Ti0.9)O3 ceramics by Tm3+ amphoteric substitution. Mater. Chem. Phys. 252, 123242 (2020). https://doi.org/10.1016/j.matchemphys.2020.123242

    Article  Google Scholar 

  6. B. Wu, H. Wu, J. Wu, D. Xiao, J. Zhu, S.J. Pennycook, Giant piezoelectricity and high curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J Am Chem Soc. 138, 15459–15464 (2016). https://doi.org/10.1021/jacs.6b09024

    Article  Google Scholar 

  7. J. Xing, Z. Tan, X. Chen, L. Jiang, W. Wang, X. Deng, B. Wu, J. Wu, D. Xiao, J. Zhu, Rietveld analysis and electrical properties of BiInO3 doped KNN-based ceramics. Inorg. Chem. 58, 428–438 (2019). https://doi.org/10.1021/acs.inorgchem.8b02600

    Article  Google Scholar 

  8. M. Zhang, X. Zhang, H. Zhu, X. Qi, Temperature dependent phase structure and enhanced electrical properties of CaZrO3-modified (K, Na, Li) (Nb, Ta)O3 lead-free piezoelectric ceramics. Ceram. Int. 47, 30628–30635 (2021). https://doi.org/10.1016/j.ceramint.2021.07.240

    Article  Google Scholar 

  9. R. Zhao, Y. Li, Z. Zheng, W. Kang, Phase structure regulation and enhanced piezoelectric properties of Li-doped KNN-based ceramics. Mater. Chem. Phys. 245, 122806 (2020). https://doi.org/10.1016/j.matchemphys.2020.122806

    Article  Google Scholar 

  10. L. Jiang, Y. Li, J. Xing, J. Wu, Q. Chen, H. Liu, D. Xiao, J. Zhu, Phase structure and enhanced piezoelectric properties in (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 lead-free piezoelectric ceramics. Ceram, Int. 43, 2100–2106 (2017). https://doi.org/10.1016/j.ceramint.2016.10.189

    Article  Google Scholar 

  11. K. Chen, J. Ma, C. Shi, W. Wu, B. Wu, Enhanced temperature stability in high piezoelectric performance of (K, Na)NbO3-based lead-free ceramics trough co-doped antimony and tantalum. J. Alloy. Compd. 852, 156865 (2021). https://doi.org/10.1016/j.jallcom.2020.156865

    Article  Google Scholar 

  12. P. Li, Y. Huan, W. Yang, F. Zhu, X. Li, X. Zhang, B. Shen, J. Zhai, High-performance potassium-sodium niobate lead-free piezoelectric ceramics based on polymorphic phase boundary and crystallographic texture. Acta Mater. 165, 486–495 (2019). https://doi.org/10.1016/j.actamat.2018.12.024

    Article  ADS  Google Scholar 

  13. J. Wu, D. Xiao, J. Zhu, Potassium-sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115, 2559–2595 (2015). https://doi.org/10.1021/cr5006809

    Article  Google Scholar 

  14. Z. Cen, W. Feng, P. Zhao, L. Chen, C. Zhu, Y. Yu, L. Li, X. Wang, Design on improving piezoelectric strain and temperature stability of KNN-based ceramics. J. Am. Ceram. Soc. 102, 2675–2683 (2018). https://doi.org/10.1111/jace.16136

    Article  Google Scholar 

  15. X. Lv, X.-X. Zhang, J. Wu, Nano-domains in lead-free piezoceramics: a review. J. Mater. Chem. A. 8, 10026–10073 (2020). https://doi.org/10.1039/d0ta03201h

    Article  Google Scholar 

  16. H.C. Thong, C. Zhao, Z. Zhou, C.-F. Wu, Y.-X. Liu, Z.-Z. Du, J.-F. Li, W. Gong, K. Wang, Technology transfer of lead-free (K, Na)NbO3-based piezoelectric ceramics. Mater. Today 29, 37–48 (2019). https://doi.org/10.1016/j.mattod.2019.04.016

    Article  Google Scholar 

  17. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, M. Itoh, Tuning the orthorhombic-rhombohedral phase transition temperature in sodium potassium niobate by incorporating barium zirconate. Phys. Status Solidi RRL 3, 142–144 (2009). https://doi.org/10.1002/pssr.200903090

    Article  Google Scholar 

  18. X. Gao, Z. Cheng, Z. Chen, Y. Liu, X. Meng, X. Zhang, J. Wang, Q. Guo, B. Li, H. Sun, Q. Gu, H. Hao, Q. Shen, J. Wu, X. Liao, S.P. Ringer, H. Liu, L. Zhang, W. Chen, F. Li, S. Zhang, The mechanism for the enhanced piezoelectricity in multi-elements doped (K, Na)NbO3 ceramics. Nat. Commun. 12, 881 (2021). https://doi.org/10.1038/s41467-021-21202-7

    Article  ADS  Google Scholar 

  19. Z. Fu, J. Yang, P. Lu, L. Zhang, H. Yao, F. Xu, Y. Li, Influence of secondary phase on polymorphic phase transition in Li-doped KNN lead-free ceramics. Ceram. Int. 43, 12893–12897 (2017). https://doi.org/10.1016/j.ceramint.2017.06.185

    Article  Google Scholar 

  20. M.K. Lee, S.A. Yang, J.J. Park, G.J. Lee, Proposal of a rhombohedral-tetragonal phase composition for maximizing piezoelectricity of (K, Na)NbO3 ceramics. Sci. Rep. 9, 4195 (2019). https://doi.org/10.1038/s41598-019-40943-6

    Article  ADS  Google Scholar 

  21. H.-C. Thong, A. Payne, J.-W. Li, Y.-Y.-S. Cheng, J.L. Jones, K. Wang, The origin of chemical inhomogeneity in lead-free potassium sodium niobate ceramic: competitive chemical reaction during solid-state synthesis. Acta Mater. 211, 116833 (2021). https://doi.org/10.1016/j.actamat.2021.116833

    Article  Google Scholar 

  22. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A. 32, 751–767 (1976). https://doi.org/10.1107/S0567739476001551

    Article  ADS  Google Scholar 

  23. Q. Yin, Y. Wang, Q. Zhang, K. Hu, J. Yang, L. Yang, Structure and properties of K0.5Na0.5Nb0.96Sb0.04O3 piezoelectric ceramics doped by CuO. Func. Mater. Lett. 14, 2151042 (2021). https://doi.org/10.1142/s1793604721510425

    Article  ADS  Google Scholar 

  24. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, Design and electrical properties’ investigation of (K0.5Na0.5)NbO3–BiMeO3 lead-free piezoelectric ceramics. J. Appl. Phys. 104, 034104 (2008). https://doi.org/10.1063/1.2964100

    Article  ADS  Google Scholar 

  25. T. Liu, Y. Chen, Z. Zheng, Y. Li, P. Jia, Y. Wang, The high nano-domain improves the piezoelectric properties of KNN lead-free piezo-ceramics. Ceram. Int. 49, 25035–25042 (2023). https://doi.org/10.1016/j.ceramint.2023.05.032

    Article  Google Scholar 

  26. T. Zheng, J. Wu, D. Xiao, J. Zhu, Recent development in lead-free perovskite piezoelectric bulk materials. Prog. Mater. Sci. 98, 552–624 (2018). https://doi.org/10.1016/j.pmatsci.2018.06.002

    Article  Google Scholar 

  27. O. Tokay, M. Yazıcı, A review of potassium sodium niobate and bismuth sodium titanate based lead free piezoceramics. Mater. Today Commun. 31, 103358 (2022). https://doi.org/10.1016/j.mtcomm.2022.103358

    Article  Google Scholar 

  28. B. Wu, C. Zhao, Y. Huang, J. Yin, W. Wu, J. Wu, Superior electrostrictive effect in relaxor potassium sodium niobate based ferroelectrics. ACS Appl. Mater. Interfaces 12, 25050–25057 (2020). https://doi.org/10.1021/acsami.0c06131

    Article  Google Scholar 

  29. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, J. Zhu, Superior piezoelectric properties in potassium-sodium niobate lead-free ceramics. Adv. Mater. 28, 8519–8523 (2016). https://doi.org/10.1002/adma.201601859

    Article  Google Scholar 

  30. Y. Cheng, J. Xing, C. Wu, T. Wang, L. Xie, Y. Liu, X. Xu, K. Wang, D. Xiao, J. Zhu, Investigation of high piezoelectric properties of KNNSb-Sr BNZ ceramics. J. Alloy. Compd. 815, 152252 (2020). https://doi.org/10.1016/j.jallcom.2019.152252

    Article  Google Scholar 

  31. Q. Gou, J. Zhu, J. Wu, F. Li, L. Jiang, D. Xiao, Microstructure and electrical properties of (1-x)K0.5Na0.5NbO3–xBi0.5Na0.5Zr0.85Sn0.15O3 lead-free ceramics. J. Alloy. Compd. 730, 311–317 (2018). https://doi.org/10.1016/j.jallcom.2017.09.331

    Article  Google Scholar 

  32. B. Malic, J. Bernard, A. Bencan, M. Kosec, Influence of zirconia addition on the microstructure of K0.5Na0.5NbO3 ceramics. J. Eur. Ceram. Soc. 28, 1191–1196 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.11.004

    Article  Google Scholar 

  33. J. Noh, J. Yoo, Dielectric and piezoelectric properties of (K0.5Na0.5)(Nb0.97Sb0.03)O3 ceramics doped with Bi2O3. J. Electroceram. 29, 144–148 (2012). https://doi.org/10.1007/s10832-012-9744-1

    Article  Google Scholar 

  34. Y. Hou, M. Zhu, F. Gao, H. Wang, B. Wang, H. Yan, C. Tian, Effect of MnO2 addition on the structure and electrical properties of Pb(Zn1/3Nb2/3)0.20(Zr0.50Ti0.50)0.80O3 ceramics. J. Am. Ceram. Soc. 87, 847–850 (2004). https://doi.org/10.1111/j.1551-2916.2004.00847.x

    Article  Google Scholar 

  35. M. Zhu, P. Lu, Y. Hou, H. Wang, H. Yan, Effects of Fe2O3 addition on microstructure and piezoelectric properties of 0.2PZN–0.8PZT ceramics. J. Mater. Res. 20, 2670–2675 (2005). https://doi.org/10.1557/jmr.2005.0339

    Article  ADS  Google Scholar 

  36. J. Mata, A. Duran, E. Martinez, R. Escamilla, J. Heiras, J.M. Siqueiros, Crystal structure and relaxor-type transition in SrBi2Ta2O9 doped with praseodymium. J. Phys. Condens. Matter 18, 10509–10520 (2006). https://doi.org/10.1088/0953-8984/18/46/016

    Article  ADS  Google Scholar 

  37. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectrics 44, 55–61 (2011). https://doi.org/10.1080/00150198208260644

    Article  ADS  Google Scholar 

  38. K. Wang, J. Li, Domain engineering of lead-free Li-modified (K, Na)NbO3 polycrystals with highly enhanced piezoelectricity. Adv. Funct. Mater. 20, 1924–1929 (2010). https://doi.org/10.1002/adfm.201000284

    Article  Google Scholar 

  39. G. Huang, K. Zeng, B. Wang, J. Wang, Z. Fu, F. Xu, S. Zhang, H. Luo, D. Viehland, Y. Guo, Giant electric field–induced strain in lead-free piezoceramics. Science 378, 1125–1130 (2022). https://doi.org/10.1126/science.ade2964

    Article  ADS  Google Scholar 

  40. X. Lv, N. Zhang, J. Wu, X. Zhang, The role of adding Bi0.5Al0.5ZrO3 in affecting orthorhombic-tetragonal phase transition temperature and electrical properties in potassium sodium niobate ceramics. Acta Mater. 197, 224–234 (2020). https://doi.org/10.1016/j.actamat.2020.07.053

    Article  ADS  Google Scholar 

  41. D. Wang, F. Hussain, A. Khesro, A. Feteira, Y. Tian, Q. Zhao, I.M. Reaney, Composition and temperature dependence of structure and piezoelectricity in (1–x)(K1−yNay)NbO3-x(Bi1/2Na1/2)ZrO3 lead-free ceramics. J. Am. Ceram. Soc. 100, 627–637 (2017). https://doi.org/10.1111/jace.14589

    Article  Google Scholar 

  42. S. Zhang, R. Xia, L. Lebrun, D. Anderson, T.R. Shrout, Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 3471–3475 (2005). https://doi.org/10.1016/j.matlet.2005.06.016

    Article  Google Scholar 

  43. Y. Guo, K.-I. Kakimoto, H. Ohsato, Phase transitional behavior and piezoelectric properties of (Na0.5K0.5)NbO3–LiNbO3 ceramics. Appl. Phys. Lett. 85, 4121–4123 (2004). https://doi.org/10.1063/1.1813636

    Article  ADS  Google Scholar 

  44. J.Y. Li, R.C. Rogan, E. Ustundag, K. Bhattacharya, Domain switching in polycrystalline ferroelectric ceramics. Nat. Mater. 4, 776–81 (2005). https://doi.org/10.1038/nmat1485

    Article  ADS  Google Scholar 

  45. R. Mahdi, N.J. Al-Bahnam, M.A. Ajeel, A. Al-Keisy, T.A. Hussein, W.H.A. Majid, High-performance (K, Na)NbO3-based binary lead-free piezoelectric ceramics modified with acceptor metal oxide. Ceram. Int. 46, 21762 (2020). https://doi.org/10.1016/j.ceramint.2020.05.287

    Article  Google Scholar 

  46. Q. Gou, D. Xiao, B. Wu, M. Xiao, S. Feng, D. Ma, J. Wu, J. Zhu, New (1–x)K0.5Na0.5NbO3–x(0.15Bi0.5Na0.5TiO3–0.85Bi0.5Na0.5ZrO3) ternary lead-free ceramics: microstructure and electrical properties. RSC Adv. 5, 30660–30666 (2015). https://doi.org/10.1039/c4ra16780e

    Article  ADS  Google Scholar 

  47. Y. Chen, D. Xue, P. Wang, X. Jiang, Z. Chen, X. Liu, G. Liu, Z. Xu, Lead-free K0.5Na0.5NbO3–Bi0.5Li0.5ZrO3–BiAlO3 ternary ceramics: structure and piezoelectric properties. J. Electroceram. 40, 36–41 (2017). https://doi.org/10.1007/s10832-017-0089-7

    Article  Google Scholar 

  48. Z. Wang, D. Xiao, J. Wu, M. Xiao, F. Li, J. Zhu, D. Damjanovic, New lead-free (1–x)(K0.5Na0.5)NbO3-x(Bi0.5Na0.5)ZrO3 Ceramics with high piezoelectricity. J. Am. Ceram. Soc. 97, 688–690 (2014). https://doi.org/10.1111/jace.12836

    Article  Google Scholar 

  49. H. Zhong, H. Xiao, N. Jiao, Y. Guo, Boosting piezoelectric response of KNN-based ceramics with strong visible-light absorption. J. Am. Ceram. 102, 6422–6426 (2019). https://doi.org/10.1111/jace.16618

    Article  Google Scholar 

  50. C. Zhou, W. Cai, X. Yang, Q. Zhang, D. Chen, Y. Wang, R. Huang, M. Du, R. Gao, G. Chen, X. Deng, Z. Wang, X. Lei, C. Fu, Dielectric, ferroelectric and piezoelectric behaviors of thulium-doped KNN ceramics fabricated by microwave sintering. J. Mater. Sci.: Mater Electron. 33, 17258–17271 (2022). https://doi.org/10.1007/s10854-022-08602-1

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project entrusted by Anhui Huachen Testing Technology Research Institute Co., Ltd (Study on the modification of high properties piezoelectric ceramics), Natural Science Foundation of Anhui Provincial Department of Education (No.2022AH010096), 2021 Hefei University Postgraduate Innovation and Entrepreneurship Project (No.21YCXL47), 2022 New Era Education Quality Project (Postgraduate Education, No.2022xscx146), Anhui Provincial Department of Education College Student Innovation and Entrepreneurship Training Program Project in 2022 (No.1602239239427198976, 1602554832370012160, 1601848523123331072 and 1601558725666017280).

Author information

Authors and Affiliations

Authors

Contributions

Ruihua Zheng: conceptualization, methodology. Fei Lin: software, data curation, writing—original draft. Qiyi Yin: conceptualization, resources. Quanzheng Zhang and Hui Zhang: visualization, investigation. Kunhong Hu: data curation, methodology. Yulin Zhang, Chen Chen, Zhongrui Du and Fan Si: visualization, investigation. Kejie Yang, Yangyang, Zhu and Wangzu Zou: revision.

Corresponding author

Correspondence to Qiyi Yin.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, R., Lin, F., Yin, Q. et al. The ceramics based on (Bi0.5Li0.5)0.9Sr0.1ZrO3-doped K0.44Na0.55Ag0.01Nb0.95Ta0.05O3 exhibit enhanced structural and electric properties. Appl. Phys. A 130, 370 (2024). https://doi.org/10.1007/s00339-024-07541-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07541-4

Keywords

Navigation