Skip to main content
Log in

High Q/V single-mode nanobeam-grating resonator, functional in the ultra-high sensitive label-free lab-on-a-chip chemical sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we design and optimize a single-mode photonic crystal (PhC) nanobeam-grating (NBG) structure with antisymmetric quarter-elliptical walls geometry based on the computational finite element method (FEM). This structure is capable of providing a wide bandwidth spectrum for chemical sensing (ChS) operation due to the 2∆λ ≈ 110 nm wide bandgap (with a Bragg wavelength center of λB ≈ 1550 nm) and filtering out the undesired optical modes. Due to the ChS mode intensification (fundamental mode TE1 wavelength λ = 1550 nm) with a high quality (Q) factor Q = 3.565 × 103 and a very small modal volume (MVol) Vmode = 0.0012(λres/nSi)3 in the cavity area as well as confinement of the evanescent wave mode (EWM) in the air grating near the cavity (where chemical analyte, ChAn, is placed) supporting a very high confinement factor (CFac), Γ ≈ 0.45, the single-mode PhC nanobeam resonator offers a very good platform for ChS operation with very low light dissipation. The proposed nanobeam photonic resonator structure can analyze a very small surface analyte, 0.01199 µm2 of ChAn such as ethanol (C2H5OH) and water (H2O) with extremely high sensitivities SEthanol ≈ 1554.22 nm/RIU and SWater ≈ 1549.49 nm/RIU, respectively. The high sensitivity S and high Q/Vmode ratio, the capability of Label-Free sensing operation as well as being ultra-compact, indicate that the single-mode nanobeam structure as a passive photonic structure is a very practical candidate in the Lab-on-a-Chip (LOC) chemical sensor systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data supporting this study are included within the article.

References

  1. S.M. Shaban, A. Mehaney, A.H. Aly, Determination of 1-propanol, ethanol, and methanol concentrations in water based on a one-dimensional phoxonic crystal sensor. Appl. Opt. 59(13), 3878–3885 (2020)

    Article  ADS  Google Scholar 

  2. D.-Q. Yang, B. Duan, X. Liu, A.-Q. Wang, X.-G. Li, Y.-F. Ji, Photonic crystal nanobeam cavities for nanoscale optical sensing: a review. Micromachines 11(1), 72 (2020)

    Article  Google Scholar 

  3. Y. Ma, B. Dong, C. Lee, Progress of infrared guided-wave nanophotonic sensors and devices. Nano Convergence 7(1), 1–34 (2020)

    Article  Google Scholar 

  4. A. Ymeti, J.S. Kanger, J. Greve, P.V. Lambeck, R. Wijn, R.G. Heideman, Realization of a multichannel integrated Young interferometer chemical sensor. Appl. Opt. 42(28), 5649–5660 (2003)

    Article  ADS  Google Scholar 

  5. A. Prabhakar, D. Verma, A. Dhwaj, S. Mukherji, Microchannel integrated tapered and tapered-bend waveguides, for proficient, evanescent-field absorbance based, on-chip, chemical and biological sensing operations. Sens. Actuators, B Chem. 332, 129455 (2021)

    Article  Google Scholar 

  6. W. Hadibrata, H. Noh, H. Wei, S. Krishnaswamy, K. Aydin, Compact, high-resolution inverse-designed on-chip spectrometer based on tailored disorder modes. Laser & Photon. Rev., p. 2000556, (2021)

  7. A. Buzzin, R. Asquini, D. Caputo, G. de Cesare, On-glass integrated SU-8 waveguide and amorphous silicon photosensor for on-chip detection of biomolecules: feasibility study on hemoglobin sensing. Sensors 21(2), 415 (2021)

    Article  ADS  Google Scholar 

  8. S. Mirzanejhad, A. Ghadi, M.E. Daraei, Numerical study of nanoscale biosensor based on surface plasmon polariton propagation in Mach-Zehnder interferometer structure. Phys. B 557, 141–146 (2019)

    Article  ADS  Google Scholar 

  9. H. Nikbakht, H. Latifi, G.-M. Parsanasab, M. Taghavi, M. Riyahi, Utilizing polarization-selective mode shaping by chalcogenide thin film to enhance the performance of graphene-based integrated optical devices. Sci. Rep. 9(1), 1–10 (2019)

    Article  Google Scholar 

  10. B.E. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, 2019)

    Google Scholar 

  11. M. Butt, S. Degtyarev, S. Khonina, N. Kazanskiy, An evanescent field absorption gas sensor at mid-IR 3.39 μm wavelength. J. Mod. Opt. 64(18), 1892–1897 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  12. M. Zibaii, H. Latifi, A. Asadollahi, A.H. Bayat, L. Dargahi, A. Haghparast, Label free fiber optic apta-biosensor for in-vitro detection of dopamine. J. Lightwave Technol. 34(19), 4516–4524 (2016)

    Article  ADS  Google Scholar 

  13. A. Valipour, M.H. Kargozarfard, M. Rakhshi, A. Yaghootian, H.M. Sedighi, Metamaterials and their applications: an overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 236(11), 2171–2210 (2022)

    Google Scholar 

  14. M. Vlk, A. Datta, S. Alberti, H.D. Yallew, V. Mittal, G.S. Murugan, J. Jágerská, Extraordinary evanescent field confinement waveguide sensor for mid-infrared trace gas spectroscopy. Light Sci. Appl. 10(1), 1–7 (2021)

    Article  Google Scholar 

  15. T.H. Talukdar, G.D. Allen, I. Kravchenko, J.D. Ryckman, Single-mode porous silicon waveguide interferometers with unity confinement factors for ultra-sensitive surface adlayer sensing. Opt. Express 2(16), 22485–22498 (2019)

    Article  ADS  Google Scholar 

  16. M.-M. Babakhani-Fard, A. Daraei, N. Hatefi-Kargan, Ultrahigh sensitive gas sensors based on slotted photonic wire-based structures including optical microcavities. Eur. Phys. J. Plus 135(3), 1–13 (2020)

    Article  Google Scholar 

  17. F. Khozeymeh, F. Melli, S. Capodaglio, R. Corradini, F. Benabid, L. Vincetti, A. Cucinotta, Hollow-core fiber-based biosensor: A platform for lab-in-fiber optical biosensors for DNA detection. Sensors 22(14), 5144 (2022)

    Article  ADS  Google Scholar 

  18. R. Singh, V. Priye, D. Chack, Highly sensitive refractive index-based sensor for DNA hybridization using subwavelength grating waveguide. IETE Tech. Rev. 39(6), 1463–1472 (2022)

    Article  Google Scholar 

  19. P. Xu, J. Zheng, J. Zhou, Y. Chen, C. Zou, A. Majumdar, Multi-slot photonic crystal cavities for high-sensitivity refractive index sensing. Opt. Express 27(3), 3609–3616 (2019)

    Article  ADS  Google Scholar 

  20. P. Seidler, K. Lister, U. Drechsler, J. Hofrichter, T. Stöferle, Slotted photonic crystal nanobeam cavity with an ultrahigh quality factor-to-mode volume ratio. Opt. Express 21(26), 32468–32483 (2013)

    Article  ADS  Google Scholar 

  21. M.-M. Babakhani-Fard, A. Daraei, S. Hassani, Bio-medical sensing by ultra-high quality-factor/modal-volume (Q/V) multi-slotted SOI Bragg grating cavity. Eur. Phys. J. Plus 137(6), 1–10 (2022)

    Article  Google Scholar 

  22. Z. Fu, F. Sun, C. Wang, J. Wang, H. Tian, High-sensitivity broad free-spectral-range two-dimensional three-slot photonic crystal sensor integrated with a 1D photonic crystal bandgap filter. Appl. Opt. 58(22), 5997–6002 (2019)

    Article  ADS  Google Scholar 

  23. S. Yang, Y. Wu, Y. Yang, C. Wang, H. Tian, High sensitivity and anti-external interference dual-parameter sensor based on a multimode slotted photonic crystal nanobeam cavity. J. Mod. Opt. 68(7), 357–364 (2021)

    Article  ADS  Google Scholar 

  24. M. Al-Hmoud, S. Bougouffa, Simultaneous high Q/V-ratio and optimized far-field emission pattern in diamond slot-bridge nanobeam cavity. Results Phys. 26, 104314 (2021)

    Article  Google Scholar 

  25. N. Nawi, B.Y. Majlis, M.A. Mahdi, R.M. De La Rue, M. Lonĉar, A.M. Zain, Enhancement and reproducibility of high quality factor, one-dimensional photonic crystal/photonic wire (1D PhC/PhW) microcavities. J. Eur. Opt. Soc.-Rapid Publ. 14(1), 6 (2018)

    Article  Google Scholar 

  26. W. Zhu, Y. Fan, R. Yang, G. Geng, Q. Fu, C. Gu, J. Li, F. Zhang, Polarization-multiplexed silicon metasurfaces for multi-channel visible light modulation. Adv. Func. Mater. 32(22), 2200013 (2022)

    Article  Google Scholar 

  27. A.J. Ollanik, I.O. Oguntoye, G.Z. Hartfield, M.D. Escarra, Highly sensitive, affordable, and adaptable refractive index sensing with silicon-based dielectric metasurfaces. Adv. Mater. Technol. 4(2), 1800567 (2019)

    Article  Google Scholar 

  28. R. Yang, Y. Fan, W. Zhu, C. Hu, S. Chen, H. Wei, W. Chen, C.T. Chan, Q. Zhao, J. Zhou, F. Zhang, Terahertz silicon metagratings: high-efficiency dispersive beam manipulation above diffraction cone. Laser Photon. Rev. 17(7), 2200975 (2023)

    Article  ADS  Google Scholar 

  29. Y.-L. Fu, C.-S. Deng, S.-S. Ma, Design and analysis of refractive index sensors based on slotted photonic crystal nanobeam cavities with sidewall gratings. Appl. Opt. 59(4), 896–903 (2020)

    Article  ADS  Google Scholar 

  30. P. Sanati, A. Shafiee, M. Bahadoran, E. Akbari, Label-free biosensor array comprised of Vernier microring resonator and 3×3 optical coupler. Eur. Phys. J. Plus 135(11), 1–14 (2020)

    Article  Google Scholar 

  31. S.R. Hamidi, A. Daraei, A nanomaterial sensor based on tapered photonic crystal nanometer-scale cavity in a microdisk. Opt. Quant. Electron. 52(3), 1–11 (2020)

    Article  Google Scholar 

  32. I. Brice, K. Grundsteins, A. Atvars, J. Alnis, R. Viter, A. Ramanavicius, Whispering gallery mode resonator and glucose oxidase based glucose biosensor. Sens. Actuators, B Chem. 318, 128004 (2020)

    Article  Google Scholar 

  33. J. Joannopoulos, S. Johnson, J. Winn, R. Meade, Photonic Crystals: Molding the Flow of Light, 2nd edn. (Princeton University Press, 2008)

    Google Scholar 

  34. F. Sohrabi, S.M. Hamidi, N. Asgari, M.A. Ansari, R. Gachiloo, One dimensional photonic crystal as an efficient tool for in-vivo optical sensing of neural activity. Opt. Mater. 96, 109275 (2019)

    Article  Google Scholar 

  35. S.M. Hamidi, A. Bananej, M.M. Tehranchi, Tunable optical properties in engineered one-dimensional coupled resonator optical waveguides. Opt. Laser Technol. 44(5), 1556–1563 (2012)

    Article  ADS  Google Scholar 

  36. J. Zhou, J. Zheng, Z. Fang, P. Xu, A. Majumdar, Ultra-low mode volume on-substrate silicon nanobeam cavity. Opt. Express 27(21), 30692–30699 (2019)

    Article  ADS  Google Scholar 

  37. P. Xu, K. Yao, J. Zheng, X. Guan, Y. Shi, Slotted photonic crystal nanobeam cavity with parabolic modulated width stack for refractive index sensing. Opt. Express 21(22), 26908–26913 (2013)

    Article  ADS  Google Scholar 

  38. J.A. Timpson, D. Sanvitto, A. Daraei, P.S.S. Guimarães, A. Tahraoui, P.W. Fry, M. Hopkinson, D.M. Whittaker, A.M. Fox, M.S. Skolnick, Polarisation control and emission enhancement of a quantum dot in ultra-high finesse microcavity pillars. Physica E 32(1–2), 500–503 (2006)

    Article  ADS  Google Scholar 

  39. A. Daraei, M.E. Daraei, Compact nanocavity with elliptical slot inside photonic wire bandgap materials including sidewalls gratings for biosensing. Appl. Phys. A 122, 1–6 (2016)

    Article  Google Scholar 

  40. Q. Shi, L. Liang, J. Zhao, Joint optimization of quality factor and sensitivity: research on the performance quantification of two dimensional photonic crystal biosensor. Optik 245, 167657 (2021)

    Article  ADS  Google Scholar 

  41. M. Zhao, Z. Yang, R. Zhang, J. Zheng, P. Xu, W. Zhang, S. Dai, R. Wang, A. Majumdar, High Q chalcogenide photonic crystal nanobeam cavities. IEEE Photonics Technol. Lett. 33(11), 525–528 (2021)

    Article  ADS  Google Scholar 

  42. J.D. Ryckman, S.M. Weiss, Low mode volume slotted photonic crystal single nanobeam cavity. Appl. Phys. Lett. 101(7), 071104 (2012)

    Article  ADS  Google Scholar 

  43. D. Conteduca, F. Dell’Olio, C. Ciminelli, M.N. Armenise, New miniaturized exhaled nitric oxide sensor based on a high Q/V mid-infrared 1D photonic crystal cavity. Appl. Opt. 54(9), 2208–2217 (2015)

    Article  ADS  Google Scholar 

  44. D. Yang, X. Chen, X. Zhang, C. Lan, Y. Zhang, High-Q, low-index-contrast photonic crystal nanofiber cavity for high sensitivity refractive index sensing. Appl. Opt. 57(24), 6958–6965 (2018)

    Article  ADS  Google Scholar 

  45. P. Yu, H. Qiu, W. Wang, T. Hu, H. Yu, Z. Wang, F. Wu, X. Jiang, J. Yang, Analysis and design of refractive index biosensors based on single silicon nanobeam cavity. IEEE Photon. J. 8(5), 1–10 (2016)

    Google Scholar 

  46. P. Dong, D. Dai, Y. Shi, Low-index-mode photonic crystal nanobeam cavity for refractive index sensing at the 2 μm wavelength band. Appl. Opt. 58(12), 3059–3063 (2019)

    Article  ADS  Google Scholar 

  47. L. Huang, J. Zhang, D. He, X. Mi, Ultra-compact on-chip one dimensional nanobeam cavity for simultaneous temperature sensor and bandstop filter at 2 μm waveband. Results Phys. 41, 105913 (2022)

    Article  Google Scholar 

  48. B. Duan, S. Liu, X. Liu, X.C. Yu, C. Wang, D. Yang, High-Q quasi-BIC in photonic crystal nanobeam for ultrahigh sensitivity refractive index sensing, Results Phys. 47, 106304 (2023)

    Article  Google Scholar 

  49. M. Manoccio, V. Tasco, F. Todisco, A. Passaseo, M. Cuscuna, I. Tarantini, G. Gigli, M. Esposito, Surface lattice resonances in 3D chiral metacrystals for plasmonic sensing. Adv. Sci. 10, 2206930 (2023)

    Article  Google Scholar 

  50. P. Saha, M. Sen, A slotted photonic crystal nanobeam cavity for simultaneous attainment of ultra-high Q-factor and sensitivity. IEEE Sens. J. 18(9), 3602–3609 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to Ahmadreza Daraei.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zoor, M., Daraei, A., Hatefi-Kargan, N. et al. High Q/V single-mode nanobeam-grating resonator, functional in the ultra-high sensitive label-free lab-on-a-chip chemical sensor. Appl. Phys. A 130, 364 (2024). https://doi.org/10.1007/s00339-024-07514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07514-7

Keywords

Navigation