Skip to main content
Log in

Design and analysis of a novel HTS thin film device as planar maglev levitator and fault current limiter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a novel high temperature superconducting (HTS) thin film device as planar levitator and fault current limiter is firstly proposed and tested. Nowadays, planar magnetic levitation (maglev) levitator (PML) employed in planar maglev system is a promising high-precision positioning mechanism for modern high-end industrial fields, due to the attractive features of noncontact, zero friction, high precision, light weigh, simple structure, high reliability, fast response and fewer interfering factors, etc. In contrast to other maglev technologies, HTS maglev technology has the advantages of passive self stabilization levitation, light weight, high vacuum gain, simple structure, energy saving and no electromagnetic pollution, etc. Thus, the PML fabricated by HTS thin film can further simplify the system control strategy and improve operation efficiency. In this paper, we designed and fabricated the double sided YBa2Cu3O7-x thin film based PML and analyzed its levitation force characteristics. Besides, we also tested its fault current limiting performance, which can be employed to limit the fault current in the planar maglev system. It can be found from the experimental results that, the HTS-PML can offer the levitation force more than 400 kN/m3 and 100 N/kg, meanwhile, it can also generate the quench resistance more than 15 Ω to limit the fault current effectively. This work is perspective for the future planar maglev applications, to improve the system compactness, stability, reliability, miniaturization and lightweight with multifunctional integrated design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. S.-D. Huang, G.-Z. Cao, Xu. Junqi, Y. Cui, Wu. Chao, J. He, Predictive position control of long-stroke planar motors for high-precision positioning applications. IEEE Trans. Ind. Electron. 68(1), 796–811 (2021)

    Article  ADS  Google Scholar 

  2. Ou. Tiansheng, Hu. Chuxiong, Yu. Zhu, M. Zhang, Generation mechanism and decoupling strategy of coupling effect in maglev planar motor. IEEE/ASME Trans. Mechatronics 28(2), 781–791 (2023)

    Article  Google Scholar 

  3. Ou. Tiansheng, Hu. Chuxiong, Yu. Zhu, M. Zhang, L. Zhu, Intelligent feedforward compensation motion control of maglev planar motor with precise reference modification prediction. IEEE Trans. Ind. Electron. 68(9), 7768–7777 (2021)

    Article  Google Scholar 

  4. K. Zhang, Xu. Fengqiu, Xu. Xianze, Error-bounded tracking of maglev planar motor based on robust model predictive control. IEEE Trans. Ind. Electron. 70(11), 11576–11586 (2023)

    Article  Google Scholar 

  5. S.-D. Huang, K.-Y. Peng, G.-Z. Cao, Wu. Chao, Xu. Junqi, J. He, Robust precision position tracking of planar motors using min-max model predictive control. IEEE Trans. Ind. Electron. 69(12), 13265–13276 (2022)

    Article  Google Scholar 

  6. J.M.M. Rovers, J.W. Jansen, J.C. Compter, E.A. Lomonova, Analysis method of the dynamic force and torque distribution in the magnet array of a commutated magnetically levitated planar actuator. IEEE Trans. Ind. Electron. 59(5), 2157–2166 (2012)

    Article  Google Scholar 

  7. K.S. Jung, Y.S. Baek, Study on a novel contact-free planar system using direct drive DC coils and permanent magnets. IEEE/ASME Trans. Mechatronics 7(1), 35–43 (2002)

    Article  Google Scholar 

  8. Jong Hyun Choi, Joon Hyuk Park, and Yoon Su Baek, “Design and experimental validation of performance for a maglev moving-magnet-type synchronous pm planar motor.” IEEE Trans. Magn. 42(10), 3419–3421 (2006)

    Article  ADS  Google Scholar 

  9. M. Holmes, R. Hocken, D. Trumper, The long-range scanning stage: a novel platform for scanned-probe microscopy. Precision Eng. 24, 191–209 (2000)

    Article  Google Scholar 

  10. M.-Y. Chen, C.-F. Tsai, Fu. Li-Chen, A novel design and control to improve positioning precision and robustness for a planar maglev system. IEEE Trans. Ind. Electron. 66(6), 4860–4869 (2019)

    Article  Google Scholar 

  11. Xu. Fengqiu, Y. Shi, K. Zhang, Xu. Xianze, Real-time application of robust offset-free MPC in maglev planar machine. IEEE Trans. Ind. Electron. 70(6), 6121–6130 (2023)

    Article  Google Scholar 

  12. Suk Jung K, Su Baek Y Study on a novel contact-free planar system using direct drive DC coils and permanent magnets, IEEE/ASME Trans. Mechatronics, 7(2): 35-43 2002

  13. F. Ni, S. Mu, J. Kang, J. Xu, Robust controller design for maglev suspension systems based on improved suspension force model. IEEE Trans. Transp. Electrific. 7(3), 1765–1778 (2021)

    Article  Google Scholar 

  14. A. Woldegiorgis, X. Ge, Y. Zuo, H. Wang, M. Hassan, Sensorless control of interior permanent magnet synchronous motor drives considering resistance and permanent magnet flux linkage variation. IEEE Trans. Ind. Electron. 70(8), 7716–7730 (2023)

    Article  Google Scholar 

  15. J. Luo, Z. Su, J. Li, Z. Zhu, G. Ma, Electromagnetic modelling and ripple suppression of asymmetrical ground coil integrated with propulsion, levitation and guidance for EDS train. IEEE Trans. Energy Convers. 38(1), 713–723 (2023)

    Article  ADS  Google Scholar 

  16. Z. Deng, W. Zhang, L. Wang, Y. Wang, W. Zhou, J. Zhao, K. Lu, J. Guo, W. Zhang, X. Zhou, S. Wang, Q. Ma, U. Floegel-Delor, F.N. Werfel, A high-speed running test platform for high-temperature superconducting Maglev. IEEE Trans. Appl. Supercond. 32(4), 3600905 (2022)

    Article  Google Scholar 

  17. Y. Cheng, J. Zheng, H. Huang, Z. Deng, A reconstructed three-dimensional HTS bulk electromagnetic model considering Jc spatial inhomogeneity and its implementation in a bulks’combination system. Supercond. Sci. Technol. 34(12), 125017 (2021)

    Article  ADS  Google Scholar 

  18. Z. Deng, W. Zhang, Yu. Jun Zheng, D.J. Ren, X. Zheng, J. Zhang, P. Gao, Q. Lin, Bo. Song, C. Deng, A high-temperature superconducting maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond. 26(6), 3602408 (2016)

    Article  Google Scholar 

  19. G. Liu, K. Mao, A Novel power failure compensation control method for active magnetic bearings used in high-speed permanent magnet motor. IEEE Trans. Power Electron. 31(6), 4565–4575 (2016)

    Article  ADS  Google Scholar 

  20. W. Zhang, P. Zhu, J. Wang, H. Zhu, Stability control for a centripetal force type-magnetic bearing-rotor system based on golden frequency section point. IEEE Trans. Ind. Electron. 68(12), 12482–12492 (2021)

    Article  Google Scholar 

  21. Xu. Jimin, C. Zhang, J. Wang, W. Wang, Experimental investigations of novel compound bearing of superconducting magnetic field and hydrodynamic fluid field. IEEE Trans. Appl. Supercond. 30(1), 3600407 (2020)

    Google Scholar 

  22. S. Sasaki, K. Shimada, M. Tsuda, T. Hamajima, N. Kawai, K. Yasui, Suitable structure of PM and copper plate systems for reducing vibration transmission and improving damping effect in a superconducting seismic isolation device. IEEE Trans. Appl. Supercond. 21(3), 2233–2236 (2011)

    Article  ADS  Google Scholar 

  23. X. Zhou, H. Li, L. Wang, C. Peng, S. Wang, L. Liang, Z. Deng, Vertical dynamic response analysis of hts maglev vehicle excited by a designed coreless-typed pmlsm. IEEE Trans. Transp. Electrific. 34(12), 3421–3433 (2021)

    Google Scholar 

  24. R. Cao, Y. Jin, M. Lu, Z. Zhang, Quantitative comparison of linear flux-switching permanent magnet motor with linear induction motor for electromagnetic launch system. IEEE Trans. Ind. Electron. 65(9), 7569–7578 (2018)

    Article  Google Scholar 

  25. R. Oliveira, R. Stephan, A. Ferreira, J. Murta-Pina, Design and innovative test of a linear induction motor for urban maglev vehicles. IEEE Trans. Ind. Appl. 56(6), 6949–6956 (2020)

    Article  Google Scholar 

  26. Yu. Cheng Tan, Z.Y. Wang, X. Nie, Y. He, W. Chen, Superconducting filter based on split-ring resonator structures. IEEE Trans. Appl. Supercond. 29(4), 1500404 (2019)

    Google Scholar 

  27. Z. Wang, W. Zhang, W. Miao, D. Liu, J.-Q. Zhong, S.-C. Shi, Electron-Beam evaporated superconducting titanium thin films for antenna-coupled transition edge sensors. IEEE Trans. Appl. Supercond. 28(4), 2100204 (2018)

    Article  Google Scholar 

  28. T Guruswamy, D J Goldie and S Withington, “Quasiparticle generation efficiency in superconducting thin films,” Supercond. Sci. Technol., vol. 27, no.5, pp. 055012, May. 2014.

  29. S. Dai, T. Ma, Q. Qiu, Z. Zhu, Y. Teng, Hu. Lei, Development of a 1250-kVA Superconducting transformer and its demonstration at the superconducting substation. IEEE Trans. Appl. Supercond. 26(1), 5500107 (2016)

    Article  Google Scholar 

  30. Yu. Zhixing Gui, L.C. Wang, Le. Liang, X. Gong, Quench and recovery characteristics of SFCL based on double-sided YBCO Thin Films. IEEE Trans. Appl. Supercond. 30(2), 5600407 (2020)

    Google Scholar 

  31. W. Wang, T. Coombs, Magnetization of YBCO film with ac travelling magnetic waves of relatively short wavelengths. Appl. Phys. Lett. 110(7), 072601 (2017)

    Article  ADS  Google Scholar 

  32. W. Wang, F. Spaven, M. Zhang, M. Baghdadi, T. Coombs, Direct measurement of the vortex migration caused by traveling magnetic wave. Appl. Phys. Lett. 104(3), 032602 (2014)

    Article  ADS  Google Scholar 

  33. Yingda He, Yu Wang, Zhongming Yan, “A tunable superconducting LC-resonator with a variable superconducting electrode capacitor bank for application in wireless power transfers,” Supercond. Sci. Technol., vol. 32, no.12, pp. 12LT02, Dec. 2019.

  34. Yu. Yingda He, Y.H. Wang, W. Chen, Z. Yan, Superconducting electrode capacitor based on double-sided YBCO thin film for wireless power transfer applications. Supercond. Sci. Technol. 32(1), 015010 (2019)

    Article  ADS  Google Scholar 

  35. Le Liang, Yu Wang, Zhongming Yan and Weirong Chen, “Design and analysis of a high temperature superconducting thin film transformer,” Supercond. Sci. Technol., vol. 33, no.5, pp. 055001, May. 2020.

  36. Yu. Le Liang, Z.Y. Wang, W. Chen, Exploration of a novel HTS thin-film device combined with roles of transformer and overcurrent limiter. IEEE Trans. Ind. Electron. 68(9), 8141–8148 (2021)

    Article  Google Scholar 

  37. Z. Deng, W. Zhang, J. Zheng, Yu. Bo Wang, X.Z. Ren, J. Zhang, A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system. IEEE Trans. Appl. Supercond. 27(6), 3602008 (2017)

    Article  Google Scholar 

  38. Li. Wang, J. Liu, Y. Li, Z. Ke, Z. Deng, Dynamic response of hts pinning maglev system under high frequency excitation. IEEE Trans. Appl. Supercond. 32(6), 3601705 (2022)

    Article  Google Scholar 

  39. Z. Deng, Li. Wang, H. Li, J. Li, H. Wang, Yu. Jinbo, Dynamic studies of the HTS maglev transit system. IEEE Trans. Appl. Supercond. 31(5), 3600805 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Fundamental Research Funds for the Central Universities under Grand 2682023ZTPY043, and in part by the Foundation of Key Laboratory of Magnetic Suspension Technology and Maglev Vehicle, Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

LL: conceptualization (lead); data curation (lead); formal analysis (lead); investigation (lead); methodology (lead); writing-original draft (lead). PP: conceptualization (supporting). YW: conceptualization (supporting). ZY: conceptualization (supporting). ZD: conceptualization (supporting).

Corresponding author

Correspondence to Le Liang.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Pang, P., Wang, Y. et al. Design and analysis of a novel HTS thin film device as planar maglev levitator and fault current limiter. Appl. Phys. A 130, 331 (2024). https://doi.org/10.1007/s00339-024-07483-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07483-x

Keywords

Navigation