Skip to main content
Log in

Effect of growth temperatures on the structural and optical properties of bulk tris-(8-hydroxyquinoline) aluminium (III)

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Bulk samples of Tris (8-hydroxyquinoline) aluminium (Alq3) were prepared using wet synthesis method followed by annealing at 50 °C, 100 °C, 150 °C and 200 °C for 2 h. X ray diffraction pattern showed the formation of Alq3 crystal which is constituted of Al atom, anions of 8-hydroxyquinoline (8-Hq) and porous Al2O3–Al(OH)3. structure. The spectra of FTIR (Fourier-transform infrared) reveals that annealing Alq3 at 50 °C reduces the C=C peak to negligible but reappears when annealed at 150 °C. FESEM on as-prepared Alq3 shows hexagonal rod shaped stacked structures which on annealing at 50 °C changes to tetragonal agglomerated grains along with appearance of oval and circular shaped pores on it. From fluorescence spectroscopy it is found that the peak intensity changes non-monotonically with annealing temperatures followed by red shift and blue shift of peak maximum at 150 °C and 200 °C respectively. The temperature dependent change in the properties are mainly attributed to the onset of hydrolysis in Alq3 and change in the electronic transition levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Dresner, Double injection electroluminescence in anthracene. RCA Rev 30(2), 322 (1969)

    Google Scholar 

  2. C.W. Tang, S.A. VanSlyke, Organic electroluminescent diodes. Appl. Phys. Lett. 51(12), 913–915 (1987)

    Article  ADS  Google Scholar 

  3. S.A. Van Slyke, C.H. Chen, C.W. Tang, Organic electroluminescent devices with improved stability. Appl. Phys. Lett. 69(15), 2160–2162 (1996)

    Article  ADS  Google Scholar 

  4. Y. Chen, D. Ma, Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency. J. Mater. Chem. 22(36), 18718–18734 (2012)

    Article  ADS  Google Scholar 

  5. P. Jiang, W. Zhu, Z. Gan, W. Huang, J. Li, H. Zeng, J. Shi, Electron transport properties of an ethanol-soluble AlQ 3-based coordination polymer and its applications in OLED devices. J. Mater. Chem. 19(26), 4551–4556 (2009)

    Article  Google Scholar 

  6. P.E. Burrows, G. Gu, V. Bulovic, Z. Shen, S.R. Forrest, M.E. Thompson, Achieving full-color organic light-emitting devices for lightweight, flat-panel displays. IEEE Trans. Electron Devices 44(8), 1188–1203 (1997)

    Article  ADS  Google Scholar 

  7. G. Rajeswaran, M. Itoh, M. Boroson, S. Barry, T.K. Hatwar, K.B. Kahen, H. Takahashi, 40.1: invited paper: active matrix low temperature Poly‐Si TFT/OLED full color displays: development status. in SID Symposium Digest of Technical Papers. (Blackwell Publishing Ltd, Oxford, 2000) 31(1), 974–977

  8. L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices. Mater. Sci. Eng. R. Rep. 39(5–6), 143–222 (2002)

    Article  Google Scholar 

  9. J. Hou, H. Zhao, Z. Zhang, L. Yu, X. Yan, The antifouling tris-(8-hydroxyquinoline) aluminum: titanium dioxide coatings under visible light. Surf. Coat. Technol. 468, 129743 (2023). https://doi.org/10.1016/j.surfcoat.2023.129743

    Article  Google Scholar 

  10. M.E. Sánchez Vergara, L.A. Cantera Cantera, C. Rios, R. Salcedo, O. Lozada Flores, A. Dutt, Preparation of hybrid films based in aluminum 8-hydroxyquinoline as organic semiconductor for photoconductor applications. Sensors 23(18), 7708 (2023). https://doi.org/10.3390/s23187708

    Article  ADS  Google Scholar 

  11. C.W. Tang, S.A. VanSlyke, C.H. Chen, Electroluminescence of doped organic thin films. J. Appl. Phys. 65(9), 3610–3616 (1989)

    Article  ADS  Google Scholar 

  12. M.M. Salleh, T. Hasnan, T. Azis, S. Sepeai, M. Yahaya, Fabrication of organic light emitting diodes (oleds) for flat panel displays. Berkala Ilmiah MIPA 17(3), 9–14 (2007)

    Google Scholar 

  13. P. Popielarski, L. Mosinska, T. Zorenko, Y. Zorenko, Luminescence of tris (8-hydroxyquinoline) aluminium thin films under synchrotron radiation excitation. J. Lumin. 261, 119930 (2023). https://doi.org/10.1016/j.jlumin.2023.119930

    Article  Google Scholar 

  14. M. Cölle, W. Brütting, Thermal, structural and photophysical properties of the organic semiconductor Alq3. Phys. Stat. Sol. (a) 201(6), 1095–1115 (2004)

    Article  ADS  Google Scholar 

  15. H. Aziz, Z. Popovic, S. Xie, A.M. Hor, N.X. Hu, C. Tripp, G. Xu, Humidity induced crystallization of tris (8-hydroxyquinoline) aluminum layers in organic light-emitting devices. Appl. Phys. Lett. 72(7), 756–758 (1998)

    Article  ADS  Google Scholar 

  16. H. Aziz, Z.D. Popovic, N.X. Hu, A.M. Hor, G. Xu, Degradation mechanism of small molecule-based organic light-emitting devices. Science 283(5409), 1900–1902 (1999)

    Article  ADS  Google Scholar 

  17. H. Bi, H. Zhang, Y. Zhang, H. Gao, Z. Su, Y. Wang, Fac-Alq3 and Mer-Alq3 nano/microcrystals with different emission and charge-transporting properties. Adv. Mater. 22(14), 1631–1634 (2010). https://doi.org/10.1002/adma.200903094

    Article  Google Scholar 

  18. J.G. Mahakhode, B.M. Bahirwar, S.J. Dhoble, S.V. Moharil, Tunable photoluminescence from tris (8-hydroxyquinoline) aluminum (Alq3). in Proc of ASID, New Delhi (2006), pp. 237–239

  19. M. Debsharma, T. Pramanik, C. Daka, R. Mukherjee, Recent advances in the electrical and optical properties of Alq3 and Alq3 derivatives based OLEDS. J. Phys. Conf. Ser. 2267(1), 012159 (2022)

    Article  Google Scholar 

  20. T. Tsuboi, Y. Torii, Selective synthesis of facial and meridianal isomers of Alq3. Mol. Cryst. Liq. Cryst. 529(1), 42–52 (2010)

    Article  ADS  Google Scholar 

  21. H. Aziz, Z.D. Popovic, N.X. Hu, A.M. Hor, G. Xu, Degradation mechanism of properties. Adv. Mater. 22(14), 1631–1634 (1999)

    Google Scholar 

  22. T. Tsuboi, Y. Torii, Photoluminescence characteristics of green and blue emitting Alq3 organic molecules in crystals and thin films. J. Non-Cryst. Solids 356(37–40), 2066–2069 (2010)

    Article  ADS  Google Scholar 

  23. K.A. Higginson, D.L. Thomsen III., B. Yang, F. Papadimitrakopoulos, Chemical degradation and physical aging of aluminum (III) 8-hydroxyquinoline: implications for organic light-emitting diodes and materials design, in Organic light-emitting devices: a survey. ed. by J. Shinar (Springer, New York, 2004), pp.71–101

    Chapter  Google Scholar 

  24. K.A. Higginson, X.M. Zhang, F. Papadimitrakopoulos, Thermal and morphological effects on the hydrolytic stability of aluminum tris (8-hydroxyquinoline)(Alq3). Chem. Mater. 10(4), 1017–1020 (1998)

    Article  Google Scholar 

  25. F. Papadimitrakopoulos, D.L. Thomsen, K. Higginson, The nature of chemical impurities formed during degradation o aluminum (III) 8-hydroxyquinoline: implications for organic light-emitting diodes, In APS March Meeting Abstracts (2000), p. E23-010

  26. J.E. Knox, M.D. Halls, H.P. Hratchian, H.B. Schlegel, Chemical failure modes of AlQ3-based OLEDs: AlQ3 hydrolysis. Phys. Chem. Chem. Phys. 8(12), 1371–1377 (2006)

    Article  Google Scholar 

  27. J.J. Panek, K. Błaziak, A. Jezierska, Hydrogen bonds in quinoline N-oxide derivatives: First-principle molecular dynamics and metadynamics ground state study. Struct. Chem. 27, 65–75 (2016)

    Article  Google Scholar 

  28. A.D.V.D. Souza, L.L.D. Sousa, L. Fernandes, P.H.L. Cardoso, R. Salomão, Al2O3–Al (OH) 3-Based castable porous structures. J. Eur. Ceram. Soc. 35(6), 1943–1954 (2015)

    Article  Google Scholar 

  29. M.M. El-Nahass, A.M. Farid, A.A. Atta, Structural and optical properties of Tris (8-hydroxyquinoline) aluminum (III)(Alq3) thermal evaporated thin films. J. Alloy. Compd. 507(1), 112–119 (2010)

    Article  Google Scholar 

  30. M.K. Fung, A.M.C. Ng, A.B. Djurišić, W.K. Chan, H. Wang, Preparation of 8-hydroxyquinoline wires by decomposition of tris (8-hydroxyquinoline) aluminium. J. Exp. Nanosci. 7(5), 578–585 (2012)

    Article  Google Scholar 

  31. M. Goldman, E.L. Wehry, Environmental effects upon fluorescence of 5-and 8-hydroxyquinoline. Anal. Chem. 42(11), 1178–1185 (1970)

    Article  Google Scholar 

  32. S.A. Ansari, Q. Husain, Immobilization of Kluyveromyces lactis β galactosidase on concanavalin A layered aluminium oxide nanoparticles—its future aspects in biosensor applications. J. Mol. Catal. B Enzym. 70(3–4), 119–126 (2011)

    Article  Google Scholar 

  33. D.G. Syarif, M. Yamin, Y.I. Pratiwi, Self combustion synthesis of Al2O3 nanoparticles from bauxite utilizing sugar as fuel for nanofluids with enhanced CHF. J. Phys. Conf. Ser. 1153(1), 012068 (2019)

    Article  Google Scholar 

  34. M. Brinkmann, G. Gadret, M. Muccini, C. Taliani, N. Masciocchi, A. Sironi, Correlation between molecular packing and optical properties in different crystalline polymorphs and amorphous thin films of mer-tris (8-hydroxyquinoline) aluminum (III). J. Am. Chem. Soc. 122(21), 5147–5157 (2000)

    Article  Google Scholar 

  35. M. Muccini, M. Brinkmann, G. Gadret, C. Taliani, N. Masciocchi, A. Sironi, Optical spectroscopy of unsolvated and solvated crystalline Alq3. Synth. Met. 122(1), 31–35 (2001)

    Article  Google Scholar 

  36. M. Brinkmann, G. Gadret, C. Taliani, N. Masciocchi, A. Sironi, M. Muccini, Interplay between optical properties and molecular packing in novel isolated crystalline phases of tris-(8-hydroxyquinoline) Aluminium (III). Synth. Met. 121(1–3), 1499–1500 (2001)

    Article  Google Scholar 

  37. M. Cuba, G. Muralidharan, Effect of thermal annealing on the structural and optical properties of tris-(8-hydroxyquinoline) aluminum (III)(Alq3) films. Luminescence 30(3), 352–357 (2015)

    Article  Google Scholar 

  38. S.Y. Park, P. Ghosh, S.O. Park, Y.M. Lee, S.K. Kwak, O.H. Kwon, Origin of ultraweak fluorescence of 8-hydroxyquinoline in water: photoinduced ultrafast proton transfer. RSC Adv. 6(12), 9812–9821 (2016)

    Article  ADS  Google Scholar 

  39. S. Kim, D.H. Kim, J. Choi, H. Lee, S.Y. Kim, J.W. Park, D.H. Park, Growth and brilliant photo-emission of crystalline hexagonal column of Alq3 microwires. Materials 11(4), 472 (2018)

    Article  ADS  Google Scholar 

  40. Y. Bulteau, N. Tarrat, N. Pébère, C. Lacaze-Dufaure, 8-Hydroxyquinoline complexes (Alq3) on Al (111): atomic scale structure, energetics and charge distribution. New J. Chem. 44(35), 15209–15222 (2020)

    Article  Google Scholar 

  41. P. Puschnig, C. Ambrosch-Draxl, First-principles approach to the understanding of π-conjugated organic semiconductors. Monatsh. Chem. 139, 389–399 (2008)

    Article  Google Scholar 

  42. A.B. Djurišić et al., Influence of atmospheric exposure of tris (8-hydroxyquinoline) aluminum (Alq 3): a photoluminescence and absorption study. Appl. Phys. A 78, 375–380 (2004)

    Article  ADS  Google Scholar 

  43. D.Z. Garbuzov, V. Bulović, P.E. Burrows, S.R. Forrest, Photoluminescence efficiency and absorption of aluminum-tris-quinolate (Alq3) thin films. Chem. Phys. Lett. (1996). https://doi.org/10.1016/0009-2614(95)01424-1

    Article  Google Scholar 

  44. A. Curioni, W. Andreoni, Metal−Alq3 complexes: the nature of the chemical bonding. J. Am. Chem. Soc. 121(36), 8216–8220 (1999)

    Article  Google Scholar 

  45. A.B.D. Nandiyanto, R. Oktiani, R. Ragadhita, How to read and interpret FTIR spectroscope of organic material. Indonesian J. Sci. Technol. 4(1), 97–118 (2019)

    Article  Google Scholar 

  46. D.P. Chatterjee, M. Pakhira, A.K. Nandi, Fluorescence in “nonfluorescent” polymers. ACS Omega 5(48), 30747–30766 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We express our heartfelt gratitude to Central Instrumental Facility (CIF) at Lovely Professional University (LPU), Phagwara, Punjab, India for carrying out the research work. We would like to thank specially to UGC–DAE CSR Consortium, Kolkata Centre, Sector III, LB-8, Bidhannagar, Kolkata-700106 for providing us free optical characterization facilities for our experimental data. We also express our special thanks to Mr. Nitin Kumar Yadav and Mr. Manoj Kumar for their untiring assistance with resource and logistics support and guidance in the lab.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed significantly to the study. Material preparation, data collection, analysis, and writing of the final draft were performed by MD, ARM, RM. TP, GP assisted in experimental work and data collection, while working at the UGC-DAE consortium, Kolkata. Proofreading and design of the paper were implemented by MP. RM, the corresponding author, has supervised and finalized the study in this paper. The first draft of the manuscript was written by MD and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rupam Mukherjee.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debsharma, M., Pramanik, T., Pramanik, G. et al. Effect of growth temperatures on the structural and optical properties of bulk tris-(8-hydroxyquinoline) aluminium (III). Appl. Phys. A 130, 281 (2024). https://doi.org/10.1007/s00339-024-07461-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07461-3

Keywords

Navigation