Skip to main content
Log in

Sol–gel derived amorphous LaNbOx films for forming-free RRAM applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Sol–gel thin films of amorphous LaNbOx (LNO) were prepared to study the bipolar resistive switching (BRS) properties of Metal/LNO/ITO devices. We investigated the influences of film thickness, top electrode, annealing temperature, post-metal annealing (PMA), and bilayer structure on the resistive switching (RS) characteristics. In comparison to the as-deposited LNO thin film devices, the PMA-treated devices demonstrated better RS characteristics, with lower set/reset voltages (VSet/VReset = − 2.26V/0.9V), longer switching cycles (2466 cycles), and a > 101 Ron/Roff ratio. Furthermore, at 85 °C, the retention time exceeded 104 s, similar to the retention time at room temperature, indicating that random access memory (RRAM) may effectively function over 10 years. The improvement in RS characteristics can be attributed to the formation of an AlOx layer between the upper electrode and the insulating layer after PMA treatment, which increases the oxygen vacancy content and facilitates Al ion diffusion. The addition of a bilayer of Al was implemented to increase the thickness of AlOx, thereby improving the Ron/Roff ratio. However, this addition also degrades the RS properties of the device. Furthermore, the space charge-limited current (SCLC) conduction mechanism dominates in the high resistance state (HRS), while ohmic conduction prevails in the low resistance state (LRS) of the devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007). https://doi.org/10.1038/nmat2023

    Article  ADS  Google Scholar 

  2. J. Liang, H.S.P. Wong, Cross-point memory array without cell selectors—device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57(10), 2531–2538 (2010). https://doi.org/10.1109/TED.2010.2062187

    Article  ADS  Google Scholar 

  3. H.D. Kim, H.M. An, E.B. Lee, T.G. Kim, Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Electron Devices 58(10), 3566–3573 (2011). https://doi.org/10.1109/TED.2011.2162518

    Article  ADS  Google Scholar 

  4. S. Kim et al., Tuning resistive switching parameters in Si3N4-based RRAM for three-dimensional vertical resistive memory applications. J. Alloys Comp. 663, 419–423 (2016). https://doi.org/10.1016/j.jallcom.2015.10.142

    Article  Google Scholar 

  5. M. Lanza, A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope, Materials, 7(3), 2155–2182, (2014). Available: https://www.mdpi.com/1996-1944/7/3/2155

  6. P. Han et al., Outstanding memory characteristics with atomic layer deposited Ta2O5/Al2O3/TiO2/Al2O3/Ta2O5 nanocomposite structures as the charge trapping layer. Appl. Surface Sci. 467–468, 423–427 (2019). https://doi.org/10.1016/j.apsusc.2018.10.197

    Article  ADS  Google Scholar 

  7. Z.-Y. He et al., Atomic layer-deposited HfAlOx-based RRAM with low operating voltage for computing in-memory applications. Nanoscale Res. Lett. 14(1), 51 (2019). https://doi.org/10.1186/s11671-019-2875-4

    Article  ADS  Google Scholar 

  8. Y.L. Chen, J. Wang, C.M. Xiong, R.F. Dou, J.Y. Yang, J.C. Nie, Scanning tunneling microscopy/spectroscopy studies of resistive switching in Nb-doped SrTiO3. J. Appl. Phys. 112(2), 023703 (2012). https://doi.org/10.1063/1.4733999

    Article  ADS  Google Scholar 

  9. Z. Shen et al., Effect of annealing temperature for Ni/AlOx/Pt RRAM devices fabricated with solution-based dielectric. Micromachines, 10(7), 446, (2019). Available: https://www.mdpi.com/2072-666X/10/7/446

  10. S. Lee et al., Impact of device area and film thickness on performance of sol-gel processed ZrO2 RRAM. IEEE Electron Device Lett. 39(5), 668–671 (2018). https://doi.org/10.1109/LED.2018.2820141

    Article  ADS  Google Scholar 

  11. E. Lim, R. Ismail, Conduction mechanism of valence change resistive switching memory: a survey. Electronics 4(3), 586–613 (2015). https://doi.org/10.3390/electronics4030586

    Article  Google Scholar 

  12. D.-H. Lim, G.-Y. Kim, J.-H. Song, K.-S. Jeong, D.-H. Ko, M.-H. Cho, Filament geometry induced bipolar, complementary and unipolar resistive switching under the same set current compliance in Pt/SiOx/TiN. Sci. Rep. 5(1), 1–15 (2015)

    Article  Google Scholar 

  13. G. Niu et al., Geometric conductive filament confinement by nanotips for resistive switching of HfO2-RRAM devices with high performance. Sci. Rep. 6(1), 25757 (2016). https://doi.org/10.1038/srep25757

    Article  ADS  Google Scholar 

  14. F.M. Simanjuntak, D. Panda, T.-L. Tsai, C.-A. Lin, K.-H. Wei, T.-Y. Tseng, Enhancing the memory window of AZO/ZnO/ITO transparent resistive switching devices by modulating the oxygen vacancy concentration of the top electrode. J. Mater. Sci. 50(21), 6961–6969 (2015). https://doi.org/10.1007/s10853-015-9247-y

    Article  ADS  Google Scholar 

  15. H. Baek, C. Lee, J. Choi, J. Cho, Nonvolatile memory devices prepared from sol-gel derived niobium pentoxide films. Langmuir 29(1), 380–386 (2013). https://doi.org/10.1021/la303857b

    Article  Google Scholar 

  16. S. Sahoo, Conduction and switching behavior of e-beam deposited polycrystalline Nb2O5 based nano-ionic memristor for non-volatile memory applications. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.158394

    Article  Google Scholar 

  17. L. Chen, Q.-Q. Sun, J.-J. Gu, Y. Xu, S.-J. Ding, D.W. Zhang, Bipolar resistive switching characteristics of atomic layer deposited Nb2O5 thin films for nonvolatile memory application. Curr. Appl. Phys. 11(3), 849–852 (2011). https://doi.org/10.1016/j.cap.2010.12.005

    Article  ADS  Google Scholar 

  18. H. Liu and X. Wang, Impact of Al+ implantation on the Switching Characteristics of Al 2 O 3/La 2 O 3/Al 2 O 3 multilayer RRAM devices. in 2019 International Conference on IC Design and Technology (ICICDT), 2019: IEEE, pp. 1–4

  19. H. Zhao, H. Tu, F. Wei, Y. Xiong, X. Zhang, J. Du, Characteristics and mechanism of nano-polycrystalline La2O3thin-film resistance switching memory. Physica Status Solidi (RRL) Rapid Res. Lett. 7(11), 1005–1008 (2013). https://doi.org/10.1002/pssr.201308068

    Article  ADS  Google Scholar 

  20. H.-W. Lee, J.-H. Park, S. Nahm, D.-W. Kim, J.-G. Park, Low-temperature sintering of temperature-stable LaNbO4 microwave dielectric ceramics. Mater. Res. Bull. 45(1), 21–24 (2010). https://doi.org/10.1016/j.materresbull.2009.09.008

    Article  Google Scholar 

  21. G. Nikiforova, A. Khoroshilov, A. Tyurin, V. Gurevich, K. Gavrichev, Heat capacity and thermodynamic properties of lanthanum orthoniobate. J. Chem. Thermodyn. 132, 44–53 (2019). https://doi.org/10.1016/j.jct.2018.12.041

    Article  Google Scholar 

  22. C. Balamurugan, D.W. Lee, A. Subramania, Preparation and LPG-gas sensing characteristics of p-type semiconducting LaNbO4 ceramic material. Appl. Surface Sci. 283, 58–64 (2013). https://doi.org/10.1016/j.apsusc.2013.06.013

    Article  ADS  Google Scholar 

  23. K. Li, Y. Zhang, X. Li, M. Shang, H. Lian, J. Lin, Host-sensitized luminescence in LaNbO4: Ln 3+(Ln 3+= Eu 3+/Tb 3+/Dy 3+) with different emission colors. Phys. Chem. Chem. Phys. 17(6), 4283–4292 (2015)

    Article  Google Scholar 

  24. B. Yan, X. Xiao, Matrix induced synthesis of LaNbO4: Tb3+ phosphors by in situ composing hybrid precursors. Opt. Mater. 28(5), 498–501 (2006)

    Article  ADS  Google Scholar 

  25. Y. Cao, N. Duan, D. Yan, B. Chi, J. Pu, L. Jian, Enhanced electrical conductivity of LaNbO4 by A-site substitution. Int. J. Hydrogen Energy 41(45), 20633–20639 (2016)

    Article  Google Scholar 

  26. R. Haugsrud, T. Norby, Proton conduction in rare-earth ortho-niobates and ortho-tantalates. Nat. Mater. 5(3), 193–196 (2006)

    Article  ADS  Google Scholar 

  27. G.C. Mather, C.A. Fisher, M.S. Islam, Defects, dopants, and protons in LaNbO4. Chem. Mater. 22(21), 5912–5917 (2010)

    Article  Google Scholar 

  28. S. Ding et al., Crystal growth and characterization of a mixed laser crystal: Nd-doped Gd0.89 La0.1 NbO4. RSC Adv. 7(57), 35666–35671 (2017)

    Article  ADS  Google Scholar 

  29. S. Ding et al., Crystal growth, structure, defects, mechanical and spectral properties of Nd0.01: Gd 0.89 La 0.1 NbO 4 mixed crystal. Appl. Phys. A 123, 1–7 (2017)

    ADS  Google Scholar 

  30. F. Guo et al., Quadratic nonlinear optical properties of the new crystal La3Ga5. 5Nb0. 5O14. in Advanced Solid State Lasers, 2017: Optica Publishing Group, p. AW2A. 3

  31. D.W. Kim, D.K. Kwon, S.H. Yoon, K.S. Hong, Microwave dielectric properties of rare-earth ortho-niobates with ferroelasticity. J. Am. Ceram. Soc. 89(12), 3861–3864 (2006)

    Article  Google Scholar 

  32. H. Liu, H. Yu, J. Wang, F. Xia, C. Wang, J. Xiao, LaNbO4 as an electrode material for mixed-potential CO gas sensors. Sens. Actuators B Chem. 352, 130981 (2022). https://doi.org/10.1016/j.snb.2021.130981

    Article  Google Scholar 

  33. Q. Lu et al., Mixed potential type NH3 sensor based on YSZ solid electrolyte and metal oxides (NiO, SnO2, WO3) modified FeVO4 sensing electrodes. Sens. Actuators, B Chem. 343, 130043 (2021)

    Article  Google Scholar 

  34. B. Ku, Y. Abbas, A.S. Sokolov, C. Choi, Interface engineering of ALD HfO2-based RRAM with Ar plasma treatment for reliable and uniform switching behaviors. J. Alloy. Compd. 735, 1181–1188 (2018)

    Article  Google Scholar 

  35. M.J. Yun, D. Lee, S. Kim, C. Wenger, H.-D. Kim, A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory. Mater Charact 182, 111578 (2021). https://doi.org/10.1016/j.matchar.2021.111578

    Article  Google Scholar 

  36. S. Ha et al., Effect of annealing environment on the performance of sol–gel-processed ZrO2 RRAM. Electronics 8(9), 947 (2019)

    Article  Google Scholar 

  37. D. Bokov et al., Nanomaterial by sol-gel method: synthesis and application. Adv. Mater. Sci. Eng. 2021, 5102014 (2021). https://doi.org/10.1155/2021/5102014

    Article  Google Scholar 

  38. J. Smith, S. Chung, J. Jang, C. Biaou, V. Subramanian, Solution-processed complementary resistive switching arrays for associative memory. IEEE Trans. Electron Devices 64(10), 4310–4316 (2017). https://doi.org/10.1109/TED.2017.2732920

    Article  ADS  Google Scholar 

  39. C. Lee et al., Extremely bias stress stable enhancement mode sol–gel-processed SnO2 thin-film transistors with Y2O3 passivation layers. Appl. Surface Sci. 559, 149971 (2021). https://doi.org/10.1016/j.apsusc.2021.149971

    Article  Google Scholar 

  40. W.-Y. Lee et al., Environmentally and electrically stable sol–gel-deposited SnO2 thin-film transistors with controlled passivation layer diffusion penetration depth that minimizes mobility degradation. ACS Appl. Mater. Interfaces 14(8), 10558–10565 (2022). https://doi.org/10.1021/acsami.1c23955

    Article  MathSciNet  Google Scholar 

  41. J. Jang, H. Kang, H.C.N. Chakravarthula, V. Subramanian, Fully inkjet-printed transparent oxide thin film transistors using a fugitive wettability switch. Adv. Electron. Mater. 1(7), 1500086 (2015). https://doi.org/10.1002/aelm.201500086

    Article  Google Scholar 

  42. W.J. Scheideler, J. Jang, M.A.U. Karim, R. Kitsomboonloha, A. Zeumault, V. Subramanian, Gravure-printed sol-gels on flexible glass: a scalable route to additively patterned transparent conductors. ACS Appl. Mater. Interfaces 7(23), 12679–12687 (2015). https://doi.org/10.1021/acsami.5b00183

    Article  Google Scholar 

  43. Y.J. Hsiao et al., Structure and luminescent properties of LaNbO4 synthesized by sol-gel process. J. Lumin. 126(2), 866–870 (2007). https://doi.org/10.1016/j.jlumin.2007.01.005

    Article  Google Scholar 

  44. R. Khan et al., Oxide-based resistive switching-based devices: fabrication, influence parameters and applications. J. Mater. Chem. C 9(44), 15755–15788 (2021)

    Article  Google Scholar 

  45. H. Idriss, On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo-and electro-catalysts for water splitting and other materials applications. Surf. Sci. 712, 121894 (2021)

    Article  Google Scholar 

  46. P. Huang et al., Analytic model of endurance degradation and its practical applications for operation scheme optimization in metal oxide based RRAM. in 2013 IEEE International Electron Devices Meeting, 2013, pp. 22.5.1–22.5.4, https://doi.org/10.1109/IEDM.2013.6724685

  47. C.-C. Hsu, H. Chuang, W.-C. Jhang, Annealing effect on forming-free bipolar resistive switching characteristics of sol-gel WOx resistive memories with Al conductive bridges. J. Alloy. Compd. 882, 160758 (2021)

    Article  Google Scholar 

  48. C.-R. Cheng, M.-H. Tsai, T.-H. Hsu, M.-J. Li, C.-L. Huang, Resistive switching characteristics and mechanism of lanthanum yttrium oxide (LaYO3) films deposited by RF sputtering for RRAM applications. J. Alloys Compd. 930, 167487 (2023). https://doi.org/10.1016/j.jallcom.2022.167487

    Article  Google Scholar 

  49. C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction. in 2008 IEEE International Electron Devices Meeting, 2008, pp. 1–4, https://doi.org/10.1109/IEDM.2008.4796678

  50. S. Mondal, J.-L. Her, F.-H. Ko, T.-M. Pan, The effect of Al and Ni top electrodes in resistive switching behaviors of Yb2O3-based memory cells. ECS Solid State Lett. 1(2), P22 (2012). https://doi.org/10.1149/2.005202ssl

    Article  Google Scholar 

  51. K. Toyoura, Y. Sakakibara, T. Yokoi, A. Nakamura, K. Matsunaga, Oxide-ion conduction via interstitials in scheelite-type LaNbO4: a first-principles study. J. Mater. Chem. A 6(25), 12004–12011 (2018)

    Article  Google Scholar 

  52. W. Guan, M. Liu, S. Long, Q. Liu, W. Wang, On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. (2008). https://doi.org/10.1063/1.3039079

    Article  Google Scholar 

  53. F.L. Faita, J.P.B. Silva, M. Pereira, M.J.M. Gomes, Enhanced resistive switching and multilevel behavior in bilayered HfAlO/HfAlOx structures for non-volatile memory applications. Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4937801

    Article  Google Scholar 

  54. K. Kim et al., Thickness dependence of resistive switching characteristics of the sol–gel processed Y2O3 RRAM devices. Semicond. Sci. Technol. 38(4), 045002 (2023)

    Article  ADS  Google Scholar 

  55. H.-T. Tseng, T.-H. Hsu, M.-H. Tsai, C.-Y. Huang, C.-L. Huang, Resistive switching characteristics of sol-gel derived La2Zr2O7 thin film for RRAM applications. J. Alloys Compd. 899, 163294 (2022). https://doi.org/10.1016/j.jallcom.2021.163294

    Article  Google Scholar 

  56. K. Kim et al., Sol-gel-processed amorphous-phase ZrO2 based resistive random access memory. Mater. Res. Express 8(11), 116301 (2021)

    Article  ADS  Google Scholar 

  57. V. Pandey, A. Adiba, T. Ahmad, P. Nehla, S. Munjal, Forming-free bipolar resistive switching characteristics in Al/Mn3O4/FTO RRAM device. J. Phys. Chem. Solids 165, 110689 (2022). https://doi.org/10.1016/j.jpcs.2022.110689

    Article  Google Scholar 

  58. S. Swathi, S. Angappane, Enhanced resistive switching performance of hafnium oxide-based devices: effects of growth and annealing temperatures. J. Alloy. Compd. 913, 165251 (2022)

    Article  Google Scholar 

  59. Z. Wu, J. Zhu, Enhanced unipolar resistive switching characteristics of Hf05Zr05O2 thin films with high ON/OFF ratio. Materials 10(3), 322 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work was financially sponsored by the National Science and Technology Council of Taiwan under the projects MOST 110-2221-E-006-032-MY2 and MOST 111-2221-E-006-164-MY2. The authors would like to thank Ms. Hui–Jung Shih, The Instrument Center of National Cheng Kung University for supporting the use of high-resolution SEM (Hitachi SU8000). The authors also gratefully acknowledge the use of D8 Discover equipment belonging to the Instrument Center of National Cheng Kung University.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Jing-Han Wang: Conceptualization, Methodology, Investigation. I-Chun Ling: Validation, Data Curation, Investigation. Tsung-Hsien Hsu: Validation, Data Curation, Investigation. Cheng-Liang Huang: Writing—Original Draft, Supervision.

Corresponding author

Correspondence to Cheng-Liang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JH., Ling, IC., Hsu, TH. et al. Sol–gel derived amorphous LaNbOx films for forming-free RRAM applications. Appl. Phys. A 130, 261 (2024). https://doi.org/10.1007/s00339-024-07438-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07438-2

Keywords

Navigation