Skip to main content
Log in

Ultrasensitive and selective Cr-doped ZnO thin films synthesized via spray pyrolysis technique for detection of ammonia gas

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present study, we report the synthesis of undoped and Cr-doped ZnO thin films via spray pyrolysis for ammonia gas detection. The importance of work lies in addressing the need for ultrasensitive and selective gas sensors, particularly for ammonia detection, owing to their significance in various industrial and environmental applications. The utilization of Cr-doped ZnO thin films offers a promising approach, given their unique properties and potential for enhanced sensing performance. The prepared Cr-doped ZnO thin films exhibit remarkable response, selectivity, sensitivity and long-term stability towards 50 ppm of ammonia gas at room temperature. Also, 4% Cr-doped ZnO films show fast response (14 s) and recovery time (38 s). These findings emphasize the practical relevance and potential impact of Cr-doped ZnO thin films as efficient gas sensing materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data code and availability

Data will be made available on request.

References

  1. W. de Vries, Impacts of nitrogen emissions on ecosystems and human health: a mini review. Curr. Opin. Environ. Sci. Heal. 21, 100249 (2021). https://doi.org/10.1016/j.coesh.2021.100249

    Article  Google Scholar 

  2. I. Manisalidis, E. Stavropoulou, A. Stavropoulos, E. Bezirtzoglou, Environmental and health impacts of air pollution: a review. Front. Public Heal. 8, 14 (2020). https://doi.org/10.3389/FPUBH.2020.00014

    Article  Google Scholar 

  3. V. Kumar, D.R. Roy, Single-layer stanane as potential gas sensor for NO2, SO2, CO2 and NH3 under DFT investigation. Phys. E Low-Dimens. Syst. Nanostruct. 110, 100–106 (2019). https://doi.org/10.1016/j.physe.2019.02.001

    Article  ADS  Google Scholar 

  4. H. Rahman, M. Bråtveit, B.E. Moen, Exposure to ammonia and acute respiratory effects in a urea fertilizer factory. Int. J. Occup. Environ. HealthOccup. Environ. Health 13, 153–159 (2013). https://doi.org/10.1179/OEH.2007.13.2.153

    Article  Google Scholar 

  5. Z. Li, J. Yi, Drastically enhanced ammonia sensing of Pt/ZnO ordered porous ultra-thin films. Sens. Actuators B Chem. 317, 128217 (2020). https://doi.org/10.1016/J.SNB.2020.128217

    Article  Google Scholar 

  6. W. Liu, Y.Y. Liu, J.S. Do, J. Li, Highly sensitive room temperature ammonia gas sensor based on Ir-doped Pt porous ceramic electrodes. Appl. Surf. Sci. 390, 929–935 (2016). https://doi.org/10.1016/j.apsusc.2016.08.121

    Article  ADS  Google Scholar 

  7. K.E. Wyer, D.B. Kelleghan, V. Blanes-Vidal, G. Schauberger, T.P. Curran, Ammonia emissions from agriculture and their contribution to fine particulate matter: a review of implications for human health. J. Environ. Manage. 323, 116285 (2022). https://doi.org/10.1016/J.JENVMAN.2022.116285

    Article  Google Scholar 

  8. S. Büyükköse, Highly selective and sensitive WO3 nanoflakes based ammonia sensor. Mater. Sci. Semicond. Process.Semicond. Process. (2020). https://doi.org/10.1016/j.mssp.2020.104969

    Article  Google Scholar 

  9. Y. Kang, F. Yu, L. Zhang, W. Wang, L. Chen, Y. Li, Review of ZnO-based nanomaterials in gas sensors. Solid State Ionics 360, 115544 (2021). https://doi.org/10.1016/j.ssi.2020.115544

    Article  Google Scholar 

  10. H. Fu, Q. Wang, J. Ding, Y. Zhu, M. Zhang, C. Yang, S. Wang, Fe2O3 nanotube coating micro-fiber interferometer for ammonia detection. Sens. Actuators B Chem. 303, 127186 (2020). https://doi.org/10.1016/j.snb.2019.127186

    Article  Google Scholar 

  11. N.X. Thai, N. Van Duy, N. Van Toan, C.M. Hung, N. Van Hieu, N.D. Hoa, Effective monitoring and classification of hydrogen and ammonia gases with a bilayer Pt/SnO2 thin film sensor. Int. J. Hydrogen Energy 45, 2418–2428 (2020). https://doi.org/10.1016/j.ijhydene.2019.11.072

    Article  Google Scholar 

  12. G. Chaloeipote, R. Prathumwan, K. Subannajui, A. Wisitsoraat, C. Wongchoosuk, 3D printed CuO semiconducting gas sensor for ammonia detection at room temperature. Mater. Sci. Semicond. Process. 123, 105546 (2021). https://doi.org/10.1016/j.mssp.2020.105546

    Article  Google Scholar 

  13. M.M. Gomaa, G. RezaYazdi, M. Rodner, G. Greczynski, M. Boshta, M.B.S. Osman, V. Khranovskyy, J. Eriksson, R. Yakimova, Exploring NiO nanosize structures for ammonia sensing. J. Mater. Sci. Mater. Electron. 29, 11870–11877 (2018). https://doi.org/10.1007/s10854-018-9287-6

    Article  Google Scholar 

  14. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nanostructured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B Chem. 239, 1185–1193 (2017). https://doi.org/10.1016/j.snb.2016.08.130

    Article  Google Scholar 

  15. Y. Wang, X. NingMeng, J. Liang Cao, Rapid detection of low concentration CO using Pt-loaded ZnO nanosheets. J. Hazard. Mater. 381, 120944 (2020). https://doi.org/10.1016/j.jhazmat.2019.120944

    Article  Google Scholar 

  16. F. Gong, L. Peng, Y. Zhang, Y. Cao, D. Jia, F. Li, Selectively sensing H2S and acetone through tailoring the facets exposed on the surfaces of ZnO supercrystals. Mater. Lett. 218, 106–109 (2018). https://doi.org/10.1016/j.matlet.2018.01.116

    Article  Google Scholar 

  17. L. Zhu, W. Zeng, H. Ye, Y. Li, Volatile organic compound sensing based on coral rock-like ZnO. Mater. Res. Bull. 100, 259–264 (2018). https://doi.org/10.1016/j.materresbull.2017.12.043

    Article  Google Scholar 

  18. J. Ding, S. Chen, N. Han, Y. Shi, P. Hu, H. Li, J. Wang, Aerosol assisted chemical vapour deposition of nanostructured ZnO thin films for NO2 and ethanol monitoring. Ceram. Int. 46, 15152–15158 (2020). https://doi.org/10.1016/j.ceramint.2020.03.051

    Article  Google Scholar 

  19. B. Altun, I. KaradumanEr, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of Cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A Mater. Sci. Process. 127, 1–13 (2021). https://doi.org/10.1007/s00339-021-04843-9

    Article  Google Scholar 

  20. D. Mendil, F. Challali, T. Touam, A. Chelouche, A.H. Souici, S. Ouhenia, D. Djouadi, Influence of growth time and substrate type on the microstructure and luminescence properties of ZnO thin films deposited by RF sputtering. J. Lumin. 215, 116631 (2019). https://doi.org/10.1016/j.jlumin.2019.116631

    Article  Google Scholar 

  21. Y.H. Navale, S.R. Patil, I.A. Dhole, D.K. Bandgar, Y.M. Jadhav, P.S. Kulkarni, V.B. Patil, Prominent NO2 gas sensor based on ZnO nanowires grown by thermal evaporation. AIP Conf. Proc. (2018). https://doi.org/10.1063/1.5047709

    Article  Google Scholar 

  22. M. Rabeel, S. Javed, R. Khan, M.A. Akram, S. Rehman, D.K. Kim, M.F. Khan, Controlling the wettability of ZnO thin films by spray pyrolysis for photocatalytic applications. Materials (Basel) (2022). https://doi.org/10.3390/ma15093364

    Article  Google Scholar 

  23. R.R. Kumar, M.R. Habib, A. Khan, P.C. Chen, T. Murugesan, S. Gupta, A. Kumar Anbalagan, N.H. Tai, C.H. Lee, H.N. Lin, Sulfur monovacancies in liquid-exfoliated MoS2 nanosheets for NO2 gas sensing. ACS Appl. Nano Mater. 4, 9459–9470 (2021). https://doi.org/10.1021/ACSANM.1C01929/SUPPL_FILE/AN1C01929_SI_001.PDF

    Article  Google Scholar 

  24. P. Nakarungsee, S. Srirattanapibul, C. Issro, I.M. Tang, S. Thongmee, High performance Cr doped ZnO by UV for NH3 gas sensor. Sens. Actuators A Phys. 314, 112230 (2020). https://doi.org/10.1016/j.sna.2020.112230

    Article  Google Scholar 

  25. M.M. Hassan, W. Khan, P. Mishra, S.S. Islam, A.H. Naqvi, Enhancement of the alcohol gas sensitivity in Cr doped ZnO gas sensor. Mater. Res. Bull. (2017). https://doi.org/10.1016/j.materresbull.2017.05.019

    Article  Google Scholar 

  26. A. Khan, C. Jacob, Random and self-aligned growth of 3C-SiC nanorods via VLS–VS mechanism on the same silicon substrate. Mater. Lett. 135, 103–106 (2014). https://doi.org/10.1016/J.MATLET.2014.07.129

    Article  Google Scholar 

  27. L. Zhu, Y. Li, W. Zeng, Enhnaced ethanol sensing and mechanism of Cr-doped ZnO nanorods: Experimental and computational study. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.08.003

    Article  Google Scholar 

  28. G. Madhaiyan, T.W. Tung, H.W. Zan, H.F. Meng, C.J. Lu, A. Ansari, W.T. Chuang, H.C. Lin, UV-enhanced room-temperature ultrasensitive NO gas sensor with vertical channel nano-porous organic diodes. Sens. Actuators B Chem. 320, 128392 (2020). https://doi.org/10.1016/J.SNB.2020.128392

    Article  Google Scholar 

  29. I.Y. Habib, A.A. Tajuddin, H.A. Noor, C.M. Lim, A.H. Mahadi, N.T.R.N. Kumara, Enhanced Carbon monoxide-sensing properties of Chromium-doped ZnO nanostructures. Sci. Rep. 9, 1–12 (2019). https://doi.org/10.1038/s41598-019-45313-w

    Article  Google Scholar 

  30. A. Khan, J. Cong, R. Ranjan Kumar, S. Ahmed, D. Yang, X. Yu, Chemical vapor deposition of graphene on self-limited SiC interfacial layers formed on silicon substrates for heterojunction devices. ACS Appl. Nano Mater. 5, 17544–17555 (2022). https://doi.org/10.1021/acsanm.2c03006

    Article  Google Scholar 

  31. Z. Zang, Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films, Appl. Phys. Lett. 112 (2018). https://doi.org/10.1063/1.5017002.

  32. C. Li, Z. Zang, C. Han, Z. Hu, X. Tang, J. Du, Y. Leng, K. Sun, Enhanced random lasing emission from highly compact CsPbBr 3 perovskite thin films decorated by ZnO nanoparticles. Nano Energy 40, 195–202 (2017). https://doi.org/10.1016/j.nanoen.2017.08.013

    Article  Google Scholar 

  33. H. Wang, S. Cao, B. Yang, H. Li, M. Wang, X. Hu, K. Sun, Z. Zang, NH4Cl-modified ZnO for high-performance CsPbIBr 2 perovskite solar cells via low-temperature process. Sol. RRL. 4, 1–8 (2020). https://doi.org/10.1002/solr.201900363

    Article  Google Scholar 

  34. W. Cai, H. Li, Z. Zang, One-volt, solution-processed InZnO thin-film transistors. IEEE Electron Device Lett.Lett. 42, 525–528 (2021)

    Article  ADS  Google Scholar 

  35. H. Wang, P. Zhang, Z. Zang, High performance CsPbBr 3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer. Appl. Phys. Lett.Lett. (2020). https://doi.org/10.1063/5.0005464

    Article  Google Scholar 

  36. N.M. Moussa, F.M. Ebrahim, K. Adly, M.Y. Hassaan, Chromium doped ZnO nanoparticles for energy storage, gas and humidity sensing and spin based electronic devices applications. Opt. Quantum Electron. 54, 1–20 (2022). https://doi.org/10.1007/s11082-022-04075-y

    Article  Google Scholar 

  37. M. Chinnasamy, K. Balasubramanian, Enhanced UV photodetection behavior of Cr doped wurtzite ZnO crystalline nanorods. Opt. Mater. (Amst) 110, 110492 (2020). https://doi.org/10.1016/j.optmat.2020.110492

    Article  Google Scholar 

  38. J.K. Rajput, T.K. Pathak, V. Kumar, L.P. Purohit, Influence of sol concentration on CdO nanostructure with gas sensing application. Appl. Surf. Sci. 409, 8–16 (2017). https://doi.org/10.1016/j.apsusc.2017.03.019

    Article  ADS  Google Scholar 

  39. A. JansiSanthosam, K. Ravichandran, T. Ahamad, Donated free electrons induced enhancement in the NH3 sensing ability of ZnO thin films—effect of terbium loading. Sens. Actuators A Phys. 316, 112376 (2020). https://doi.org/10.1016/j.sna.2020.112376

    Article  Google Scholar 

  40. L.H. Kathwate, G. Umadevi, P.M. Kulal, P. Nagaraju, D.P. Dubal, A.K. Nanjundan, V.D. Mote, Ammonia gas sensing properties of Al doped ZnO thin films. Sens. Actuators A Phys. 313, 112193 (2020). https://doi.org/10.1016/j.sna.2020.112193

    Article  Google Scholar 

  41. A. Manivasaham, K. Ravichandran, K. Subha, Light intensity effects on the sensitivity of ZnO: Cr gas sensor. Surf. Eng. 33, 866–876 (2017). https://doi.org/10.1080/02670844.2017.1331724

    Article  Google Scholar 

  42. M. Iqbal, A. Ali, W. Bux, M. Tayyab, A. Hussain, I. Shah, Facile synthesis of Cr doped hierarchical ZnO nano-structures for enhanced photovoltaic performance. Inorg. Chem. Commun. 116, 107902 (2020). https://doi.org/10.1016/j.inoche.2020.107902

    Article  Google Scholar 

  43. U.T. Nakate, P. Patil, B. Ghule, Y.T. Nakate, S. Ekar, R.C. Ambare, R.S. Mane, Room temperature LPG sensing properties using spray pyrolysis deposited nano-crystalline CdO thin films. Surfaces and Interfaces. 17, 100339 (2019). https://doi.org/10.1016/J.SURFIN.2019.100339

    Article  Google Scholar 

  44. A. Mirzaei, J.H. Lee, S.M. Majhi, M. Weber, M. Bechelany, H.W. Kim, S.S. Kim, Resistive gas sensors based on metal-oxide nanowires. J. Appl. Phys. (2019). https://doi.org/10.1063/1.5118805

    Article  Google Scholar 

  45. K.J. Shailja, R.C. Singh, Singh, Enhanced toluene sensing performance of nanostructured aluminium-doped nickel oxide gas sensor. Appl. Phys. A Mater. Sci. Process. 129, 1–14 (2023). https://doi.org/10.1007/S00339-023-06473-9/METRICS

    Article  Google Scholar 

  46. R. Aydın, A. Akkaya, O. Kahveci, B. Şahin, Nanostructured CuO thin-film-based conductometric sensors for real-time tracking of sweat loss. ACS Omega 8, 20009–20019 (2023). https://doi.org/10.1021/acsomega.3c02232

    Article  Google Scholar 

  47. Y. Zhang, C. Wang, L. Zhao, F. Liu, X. Sun, X. Hu, G. Lu, Microwave-assisted synthesis of La/ZnO hollow spheres for trace-level H2S detection. Sens. Actuators B Chem. 334, 129514 (2021). https://doi.org/10.1016/j.snb.2021.129514

    Article  Google Scholar 

  48. A.P. Rambu, L. Ursu, N. Iftimie, V. Nica, M. Dobromir, F. Iacomi, Study on Ni-doped ZnO films as gas sensors. Appl. Surf. Sci. 280, 598–604 (2013). https://doi.org/10.1016/j.apsusc.2013.05.033

    Article  ADS  Google Scholar 

  49. H. Bian, S. Ma, A. Sun, X. Xu, G. Yang, S. Yan, J. Gao, Z. Zhang, H. Zhu, Improvement of acetone gas sensing performance of ZnO nanoparticles. J. Alloys Compd. 658, 629–635 (2016). https://doi.org/10.1016/j.jallcom.2015.09.217

    Article  Google Scholar 

  50. R. Naji, F. Rahman, K.M. Batoo, Effect of grain size and grain boundary defects on electrical and magnetic properties of Cr doped ZnO nanoparticles. J. Mol. Struct. 1065–1066, 199–204 (2014). https://doi.org/10.1016/j.molstruc.2014.02.056

    Article  ADS  Google Scholar 

  51. A. Koo, R. Yoo, S.P. Woo, H.S. Lee, W. Lee, Enhanced acetone-sensing properties of pt-decorated al-doped ZnO nanoparticles. Sens. Actuators, B Chem. 280, 109–119 (2019). https://doi.org/10.1016/j.snb.2018.10.049

    Article  Google Scholar 

  52. X.L. Xu, Y. Chen, S.Y. Ma, W.Q. Li, Y.Z. Mao, Excellent acetone sensor of La-doped ZnO nanofibers with unique bead-like structures. Sens. Actuators B Chem. 213, 222–233 (2015). https://doi.org/10.1016/J.SNB.2015.02.073

    Article  Google Scholar 

  53. G.H. Zhang, X.Y. Deng, P.Y. Wang, X.L. Wang, Y. Chen, H.L. Ma, D.J. Gengzang, Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor 2 Theta (degree ). Mater. Lett.Lett. 165, 83–86 (2016). https://doi.org/10.1016/j.matlet.2015.11.112

    Article  Google Scholar 

  54. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al + Mn) doping. Results Phys. 12, 1686–1696 (2019). https://doi.org/10.1016/j.rinp.2019.01.085

    Article  ADS  Google Scholar 

  55. M. Shaheera, K.G. Girija, M. Kaur, V. Geetha, A.K. Debnath, R.K. Vatsa, K.P. Muthe, S.C. Gadkari, Characterization and device application of indium doped ZnO homojunction prepared by RF magnetron sputtering. Opt. Mater. (Amst) 101, 109723 (2020). https://doi.org/10.1016/j.optmat.2020.109723

    Article  Google Scholar 

  56. N. Üzar, Investigation of detailed physical properties and solar cell performances of various type rare earth elements doped ZnO thin films. J. Mater. Sci. Mater. Electron. 29, 10471–10479 (2018). https://doi.org/10.1007/S10854-018-9111-3/TABLES/5

    Article  Google Scholar 

  57. A. Renitta, K. Vijayalakshmi, Highly sensitive hydrogen safety sensor based on Cr incorporated ZnO nano-whiskers array fabricated on ITO substrate. Sens. Actuators, B Chem. 237, 912–923 (2016). https://doi.org/10.1016/j.snb.2016.07.017

    Article  Google Scholar 

  58. M.M.A. Ahmed, W.Z. Tawfik, M.A.K. Elfayoumi, M. Abdel-Hafiez, S.I. El-Dek, Tailoring the optical and physical properties of La doped ZnO nanostructured thin films. J. Alloys Compd. 791, 586–592 (2019). https://doi.org/10.1016/j.jallcom.2019.03.340

    Article  Google Scholar 

  59. A. Maache, A. Chergui, D. Djouadi, B. Benhaoua, A. Chelouche, M. Boudissa, Effect of La doping on ZnO thin films physical properties: correlation between strain and morphology. Optik (Stuttg). 180, 1018–1026 (2019). https://doi.org/10.1016/j.ijleo.2018.11.002

    Article  ADS  Google Scholar 

  60. R. Ghomri, M.N. Shaikh, M.I. Ahmed, M. Bououdina, M. Ghers, (Al, Er) co-doped ZnO nanoparticles for photodegradation of rhodamine blue. Appl. Phys. A Mater. Sci. Process. 122, 1–9 (2016). https://doi.org/10.1007/s00339-016-0417-9

    Article  Google Scholar 

  61. M.A. Moiz, A. Mumtaz, M. Salman, S.W. Husain, A.H. Baluch, M. Ramzan, Band gap Engineering of ZnO via transition metal Doping: an ab initio study. Chem. Phys. Lett. 781, 138979 (2021). https://doi.org/10.1016/j.cplett.2021.138979

    Article  Google Scholar 

  62. A. Marikutsa, M. Rumyantseva, E.A. Konstantinova, A. Gaskov, The key role of active sites in the development of selective metal oxide sensor materials. Sensors. (2021). https://doi.org/10.3390/s21072554

    Article  Google Scholar 

  63. J. Wang, S. Fan, Y. Xia, C. Yang, S. Komarneni, Room-temperature gas sensors based on ZnO nanorod/Au hybrids: visible-light-modulated dual selectivity to NO2 and NH3. J. Hazard. Mater. 381, 120919 (2020). https://doi.org/10.1016/j.jhazmat.2019.120919

    Article  Google Scholar 

  64. R.S. Ganesh, M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B. Chem. (2017). https://doi.org/10.1016/j.snb.2017.08.015

    Article  Google Scholar 

  65. B. Himabindu, N.S.M.P. Latha Devi, P. Nagaraju, B. RajiniKanth, A nanostructured Al-doped ZnO as an ultra-sensitive room-temperature ammonia gas sensor. J. Mater. Sci. Mater. Electron. 34, 1–18 (2023). https://doi.org/10.1007/s10854-023-10337-6

    Article  Google Scholar 

  66. F. Sarf, I. KaradumanEr, E. Yakar, S. Acar, The role of rare-earth metal (Y, Ru and Cs)-doped ZnO thin films in NH3 gas sensing performances at room temperature. J. Mater. Sci. Mater. Electron. 31, 10084–10095 (2020). https://doi.org/10.1007/s10854-020-03554-w

    Article  Google Scholar 

  67. G.K. Mani, J.B.B. Rayappan, A highly selective and wide range ammonia sensor—nanostructured ZnO: Co thin film. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 191, 41–50 (2015). https://doi.org/10.1016/j.mseb.2014.10.007

    Article  Google Scholar 

  68. K. Ravichandran, A.J. Santhosam, M. Sridharan, Effect of tungsten doping on the ammonia vapour sensing ability of ZnO thin films prepared by a cost effective simplified spray technique. Surf. Interfaces 18, 100412 (2020). https://doi.org/10.1016/j.surfin.2019.100412

    Article  Google Scholar 

  69. G.H. Mhlongo, D.E. Motaung, F.R. Cummings, H.C. Swart, S.S. Ray, A highly responsive NH 3 sensor based on Pd-loaded ZnO nanoparticles prepared via a chemical precipitation approach. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-46247-z

    Article  Google Scholar 

  70. K.D. Arun Kumar, S. Valanarasu, J.S. Ponraj, B.J. Fernandes, M. Shkir, S. AlFaify, P. Murahari, K. Ramesh, Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 144, 109513 (2020). https://doi.org/10.1016/j.jpcs.2020.109513

    Article  Google Scholar 

  71. H. Song, L. Ma, S. Pei, C. Dong, E. Zhu, B. Zhang, Quantitative detection of formaldehyde and ammonia using a yttrium-doped ZnO sensor array combined with a back-propagation neural network model. Sens. Actuators A Phys. 331, 112940 (2021). https://doi.org/10.1016/J.SNA.2021.112940

    Article  Google Scholar 

  72. K.R. Devi, G. Selvan, M. Karunakaran, I.L.P. Raj, A.F.A. El-Rehim, H.Y. Zahran, M. Shkir, S. AlFaify, Enhanced room temperature ammonia gas sensing properties of Al-doped ZnO nanostructured thin films. Opt. Quantum Electron. 52, 1–19 (2020). https://doi.org/10.1007/s11082-020-02621-0

    Article  Google Scholar 

  73. S. Kanaparthi, S.S. Govind, Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2D ZnO nanoflakes. Mater. Sci. Energy Technol. 3, 91–96 (2020). https://doi.org/10.1016/j.mset.2019.10.010

    Article  Google Scholar 

  74. K. Kasirajan, L. Bruno Chandrasekar, S. Maheswari, M. Karunakaran, P. ShunmugaSundaram, A comparative study of different rare-earth (Gd, Nd, and Sm) metals doped ZnO thin films and its room temperature ammonia gas sensor activity: Synthesis, characterization, and investigation on the impact of dopant. Opt. Mater. (Amst) 121, 111554 (2021). https://doi.org/10.1016/J.OPTMAT.2021.111554

    Article  Google Scholar 

  75. A.J. Kulandaisamy, J.R. Reddy, P. Srinivasan, K.J. Babu, G.K. Mani, P. Shankar, J.B.B. Rayappan, Room temperature ammonia sensing properties of ZnO thin films grown by spray pyrolysis: Effect of Mg doping. J. Alloys Compd. 688, 422–429 (2016). https://doi.org/10.1016/j.jallcom.2016.07.050

    Article  Google Scholar 

  76. V. Adimule, M.G. Revaigh, H.J. Adarsha, Synthesis and fabrication of Y-doped ZnO nanoparticles and their application as a gas sensor for the detection of ammonia. J. Mater. Eng. Perform. 2020(29), 4586–4596 (2020). https://doi.org/10.1007/S11665-020-04979-4

    Article  Google Scholar 

Download references

Acknowledgements

VSC is thankful to the Department of Science and Technology for women Scientist-A project (WoS-A-PM-18/2021). JLG is thankful to the Science and Technology Research Board, a statutory body of the Department of Science and Technology (DST), Government of India, for awarding the Ramanujan Fellowship (SB/S2/RJN-090/2017) and CORE research grant (CRG/2019/006059).

Author information

Authors and Affiliations

Authors

Contributions

VSC: Methodology, data curation, formal analysis, writing original draft. MBK: formal analysis. SVT: software. JLG: supervision, review and editing. PMK: conceptualization, supervision, writing-review and editing.

Corresponding author

Correspondence to P. M. Kulal.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandak, V.S., Kumbhar, M.B., Talekar, S.V. et al. Ultrasensitive and selective Cr-doped ZnO thin films synthesized via spray pyrolysis technique for detection of ammonia gas. Appl. Phys. A 130, 285 (2024). https://doi.org/10.1007/s00339-024-07425-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07425-7

Keywords

Navigation