Skip to main content
Log in

Charge transport studies on pulsed laser deposited grown manganite based thin film device

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Charge transport studies on pulsed laser deposition grown Y0.95Ca0.05MnO3 (YCMO) thin film on (100) single crystalline Nb:SrTiO3 (SNTO) substrate. X-ray diffraction analysis reveals the single phase nature of YCMO manganite film having lattice mismatch between YCMO thin layer and SNTO substrate. Surface morphology, studied using atomic force microscopy, indicates the presence of island like grain growth with narrow size distribution. Transport properties have been studied by performing temperature dependent resistivity under different applied voltages across the YCMO/SNTO interface to understand the charge conduction across the same interface. The observed electric field-induced modifications in interface resistance across the YCMO/SNTO lattice have been discussed in the contexts of barrier between YCMO and SNTO, oxygen vacancies, structural disorder and structurally strained region at the film–substrate interface. Electrical resistance has been theoretically fitted using various models and mechanisms to better understand the charge conduction mechanisms in the semiconducting region for the YCMO/SNTO interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All the data recorded and analyzed during the present investigations are included in this published article.

References

  1. E. Dagotto, Nanoscale phase separation and colossal magnetoresistance: the physics of manganites and related compounds (Springer, New York, 2003)

    Book  Google Scholar 

  2. M. Hsini, L. Ghivelder, F. Parisi, Critical behavior investigated through magnetocaloric effect in PrSrMnO and Pr(Sr, Ca)MnO manganites. J. Magn. Magn. Mater. 535, 168059 (2021)

    Article  Google Scholar 

  3. Y. Moualhi, H. Rahmouni, K. Khirouni, Usefulness of theoretical approaches and experiential conductivity measurements for understanding manganite–transport mechanisms. Results Phys. 19, 103570 (2020)

    Article  Google Scholar 

  4. M. Pekala, K. Pekala, J. Szydlowska, V. Drozd, Magnetic field induced evolution of highly resistant Griffiths phase in the fine grain manganite La0.75Ca0.25MnO3. J. Magn. Magn. Mater. 475, 189 (2019)

    Article  ADS  Google Scholar 

  5. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, High magnetoresistance in La0.5Nd0.15Ca0.25A0.1MnO3 (A=Ca, Li, Na, K) CMR manganites: correlation between their magnetic and electrical properties. Mater. Res. Bull. 125, 1108 (2020)

    Google Scholar 

  6. C.B. Larsen, S. Samothrakitis, A.D. Fortes, A.O. Ayas, M. Akyol, A. Ekicibil, Basal plane ferromagnetism in the rhombohedral manganite La0.85Ag0.15MnO3+δ. J. Magn. Magn. Mater. 498, 166192 (2020)

    Article  Google Scholar 

  7. P.S. Solanki, U. Khachar, M. Vagadia, A. Ravalia, S. Katba, D.G. Kuberkar, Electroresistance and field effect studies on manganite based heterostructure. J. Appl. Phys. 117, 145306 (2015)

    Article  ADS  Google Scholar 

  8. M.K. Verma, N.D. Sharma, S. Sharma, N. Choudhary, D. Singh, Structural and magneto–transport properties of Li–substituted La0.65Ca0.35xLixMnO3 (0 ≤ x ≤ 015) CMR manganites. J. Alloys Compd. 814, 152279 (2019)

    Article  Google Scholar 

  9. H. Yang, X. Huang, Q. Wu, X. Luo, Q. Wei, J. Wang, N. Fang, M. Yu, H.G. Pan, Tailored inverse magnetocaloric effect of Pr0.5Sr0.5MnO3 manganite with Eu substitution. Mater. Chem. Phys. 267, 124676 (2021)

    Article  Google Scholar 

  10. E. Vaghela, M.J. Keshvani, K. Gadani, Z. Joshi, H. Boricha, K. Asokan, D. Venkateshwarlu, V. Ganesan, N.A. Shah, P.S. Solanki, Charge transport mechanisms in sol–gel grown La0.7Pb0.3MnO3/LaAlO3 manganite films. Phys. Chem. Chem. Phys. 19, 5163–5176 (2017)

    Article  Google Scholar 

  11. D. Kumar, J. Sankar, J. Narayan, R.K. Singh, A.K. Majumdar, Low–temperature resistivity minima in colossal magnetoresistive La0.7Ca0.3MnO3 thin films. Phys. Rev. B 65, 094407 (2002)

    Article  ADS  Google Scholar 

  12. Z. Chen, Y. Xu, Y. Su, S. Cao, J. Zhang, Resistivity minimum behavior and weak magnetic disorder characteristics in La2/3Ca1/3MnO3 manganites. J. Supercond. Nov. Magn.Supercond. Nov. Magn. 22, 465 (2009)

    Article  Google Scholar 

  13. G. Lalitha, P.V. Reddy, Low–temperature resistivity anomalies and magnetic field–induced transitions in neodymium–based manganites. Phys. Scr. 82, 045704 (2010)

    Article  ADS  Google Scholar 

  14. W. Niu, M. Gao, X. Wang, F. Song, J. Du, X. Wang, Y. Xu, R. Zhang, Evidence of weak localization in quantum interference effects observed in epitaxial La0.7Sr0.3MnO3 ultrathin films. Sci. Rep. 6, 26081 (2016)

    Article  ADS  Google Scholar 

  15. S. Solanki, D. Dhruv, H. Boricha, A. Zankat, K.N. Rathod, B. Rajyaguru, R.K. Trivedi, A.D. Joshi, S. Mukherjee, P.S. Solanki, N.A. Shah, Charge transport mechanisms and magnetoresistance behavior of La0.6Pr0.1Ca0.3MnO3 manganite. J. Solid State Chem. 288, 121446 (2020)

    Article  Google Scholar 

  16. H. Boricha, S.B. Kansara, B. Rajyaguru, S. Solanki, K.N. Rathod, D. Dhruv, P.S. Solanki, N.A. Shah, Charge conduction mechanisms and MR behavior of sol–gel grown nanostructured La0.6Nd0.1Sr0.3MnO3 manganites. Bull. Mater. Sci. 43, 252 (2020)

    Article  Google Scholar 

  17. H. Boricha, B. Udeshi, S. Mukherjee, P.S. Solanki, N.A. Shah, Resistivity and magnetoresistance behavior of La0.7Sr0.3MnO3–BiFeO3 matrix–particles composites. Chem. Phys. 549, 111277 (2021)

    Article  Google Scholar 

  18. C. Yang, B. Liu, G. Liu, F. Diao, H. Yang, Y. Wang, Effect of thin thickness and strain state on the structure, magnetic and transport properties of La0.9Sr0.1CoO3 films. Solid State Ion. 319, 28 (2018)

    Article  Google Scholar 

  19. I. Ouni, H. Ben Khlifa, R. Mnassri, M.M. Nofal, H. Rahmouni, W. Cheikhrouhou, N. Chniba-Boudjada, K. Khirouni, A. Cheikhrouhou, Structural, magnetic, electrical and dielectric properties of Pr0.8Na0.2MnO3 manganite. RSC Adv. 9, 35599 (2019)

    Article  ADS  Google Scholar 

  20. D. Varshney, D. Choudhary, M.W. Shaikh, Interpretation of metallic and semiconducting temperature–dependent resistivity of La1xNaxMnO3 (x = 0.07, 0.13) manganites. Comput. Mater. Sci.. Mater. Sci. 47, 839 (2010)

    Article  Google Scholar 

  21. M. Alguero, J.A. Quintana-Cilleruelo, O. Pen, A. Castro, Magnetic properties across the YMnO3–BiFeO3 system designed for phase–change magnetoelectric response. Mater. Sci. Eng. B 266, 115055 (2021)

    Article  Google Scholar 

  22. N. Kumar Swamy, N. Pavan Kumar, P. Venugopal Reddy, M. Gupta, S.S. Samatham, D. Venkateshwarulu, V. Ganesan, V. Malik, B.K. Das, Specific heat and magnetocaloric effect studies in multiferroic YMnO3. J. Therm. Anal. Calorim.Calorim. 119, 1191 (2015)

    Article  Google Scholar 

  23. V.R. Rayapati, D. Burger, N. Du, C. Kowol, D. Blaschke, H. Stocker, P. Matthes, R. Patra, I. Skorupa, S.E. Schulz, H. Schmidt, Charged domains in ferroelectric, polycrystalline yttrium manganite thin films resolved with scanning electron microscopy. Nanotechnology 31, 31LT01 (2022)

    Article  Google Scholar 

  24. Z. Joshi, D. Dhruv, K.N. Rathod, H. Boricha, K. Gadani, D.D. Pandya, A.D. Joshi, P.S. Solanki, N.A. Shah, Low field magnetoelectric studies on sol–gel grown nanostructured YMnO3 manganites. Prog. Solid State Chem. 49, 23 (2018)

    Article  Google Scholar 

  25. T. Ahmad, I.H. Lone, M. Ubaidullah, Structural characterization and multiferroic properties of hexagonal nano–sized YMnO3 developed by a low temperature precursor route. RSC Adv. 5, 58065 (2015)

    Article  ADS  Google Scholar 

  26. B. Raneesh, A. Saha, N. Kalarikkal, Effect of gamma radiation on the structural, dielectric and magnetoelectric properties of nanostructured hexagonal YMnO3. Rad. Phys. Chem. 89, 28 (2013)

    Article  ADS  Google Scholar 

  27. L. Wei, C.H. Jia, W.F. Zhang, Distinguish and control the multi–level resistive switching for ferroelectric layer and interface in a YMnO3/Nb:SrTiO3 device. RSC Adv. 6, 1445 (2016)

    Article  ADS  Google Scholar 

  28. N.A. Shah, Size induced tuning of dielectric behavior in nanostructured Y0.95Ca0.05MnO3 compounds. Appl. Nanosci.Nanosci. 4, 889 (2014)

    Article  ADS  Google Scholar 

  29. D. Dhruv, Z. Joshi, S. Kansara, D.D. Pandya, J.H. Markna, K. Asokan, P.S. Solanki, D.G. Kuberkar, N.A. Shah, Temperature–dependent I-V and C–V characteristic of chemically–grown Y0.95Ca0.05MnO3/Si thin films. Mater. Res. Exp. 3, 036402 (2016)

    Article  Google Scholar 

  30. D. Dhruv, Z. Joshi, K. Gadani, S. Solanki, J. Markana, K. Asokan, P.S. Solanki, N.A. Shah, Transport properties of Y0.95Ca0.05MnO3/Si junction. Phys. B: Condens. Matter 518, 33 (2017)

    Article  ADS  Google Scholar 

  31. K.N. Rathod, K. Gadani, D. Dhruv, V.G. Shrimali, S. Solanki, A.D. Joshi, J.P. Singh, K.H. Chae, K. Asokan, P.S. Solanki, N.A. Shah, Effect of oxygen vacancy gradient on ion–irradiated Ca–doped YMnO3 thin films. J. Vac. Sci. Technol. B 38, 062208 (2020)

    Article  Google Scholar 

  32. K. Gadani, K.N. Rathod, D. Dhruv, V.G. Shrimali, B. Rajyaguru, J. Joseph, A.D. Joshi, D.D. Pandya, K. Asokan, P.S. Solanki, N.A. Shah, Defects induced resistive switching behavior in Ca doped YMnO3–based non–volatile memory device through electronic excitations. Mater. Sci. Semicond. Proc. 121, 105347 (2021)

    Article  Google Scholar 

  33. K.N. Rathod, D. Dhruv, K. Gadani, H. Boricha, S. Solanki, A.D. Joshi, D.D. Pandya, K. Asokan, P.S. Solanki, N.A. Shah, Comparison of charge transport studies of chemical solution and pulsed laser deposited manganite–based thin film devices. Appl. Phys. A 123, 558 (2017)

    Article  ADS  Google Scholar 

  34. B. Hirpara, K. Gadani, B. Udeshi, M.R. Gonal, A.D. Joshi, P.S. Solanki, N.A. Shah, Temperature dependent transport characteristics of La0.9Sr0.1MnO3/SrNb0.002Ti0.998O3 device. Mater. Today Commun. 35, 106069 (2023)

    Article  Google Scholar 

  35. K.N. Rathod, K. Gadani, D. Dhruv, H. Boricha, A. Zankat, A.D. Joshi, J.P. Singh, K.H. Chae, K. Asokan, P.S. Solanki, N.A. Shah, Investigations on the electronic excitations through spectroscopic measures for resistive switching character of manganite thin films. Phys. Status Solid B 256, 1900264 (2019)

    Article  ADS  Google Scholar 

  36. B. Wang, L. You, P. Ren, X. Yin, Y. Peng, B. Xia, L. Wang, X. Yu, S.M. Poh, P. Yang, G. Yuan, L. Chen, A. Rusydi, J. Wang, Oxygen–driven anisotropic transport in ultra–thin manganite films. Nat. Commun.Commun. 4, 2778 (2013)

    Article  ADS  Google Scholar 

  37. K. Gadani, K.N. Rathod, D. Dhruv, H. Boricha, K. Sagapariya, A.D. Joshi, D.D. Pandya, K. Asokan, P.S. Solanki, N.A. Shah, Defect dynamics in the resistive switching characteristics of Y0.95Sr0.05MnO3 films induced by electronic excitations. J. Alloys Compd. 788, 819 (2019)

    Article  Google Scholar 

  38. E.L. Nagaev, Colossal–magnetoresistance materials: manganites and conventional ferromagnetic semiconductors. Phys. Rep. 346, 387 (2001)

    Article  ADS  Google Scholar 

  39. A.N. Kocharian, G.W. Fernando, K. Palandage, J.W. Davenport, Electron coherent and incoherent pairing instabilities in inhomogeneous bipartite and nonbipartite nanoclusters. Phys. Lett. 373, 1074 (2009)

    Article  Google Scholar 

  40. D. Venkateshwarlu, H. Dadhich, B. Rajyaguru, S. Hans, M. Ranjan, R. Venkatesh, V. Ganesan, P.S. Solanki, N.A. Shah, Semiconducting nature and magnetoresistance behavior of ZnO/La0.3Ca0.7MnO3/SrTiO3 heterostructures. Mater. Sci. Semicond. Proc. 136, 106154 (2021)

    Article  Google Scholar 

  41. M. Kandoliya, B. Rajyaguru, K. Gadani, N. Vaghela, H. Dadhich, D. Venkateshwarlu, A.D. Joshi, N.A. Shah, P.S. Solanki, Electric field effects on charge conduction for LaMnO3 controlled La0.7Ca0.3MnO3 manganite. Surf. Int. 30, 101949 (2022)

    Google Scholar 

  42. J.N. Eckstein, Watch out for the lack of oxygen. Nature Mater. 6, 473 (2007)

    Article  ADS  Google Scholar 

  43. H. Guo, J.O. Wang, X. He, Z. Yang, Q. Zhang, K.J. Jin, C. Ge, R. Zhao, L. Gu, Y. Feng, W. Zhou, X. Li, Q. Wan, M. He, C. Hong, Z. Guo, C. Wang, H. Lu, K. Ibrahim, S. Meng, H. Yang, G. Yang, The origin of oxygen vacancies controlling La2/3Sr1/3MnO3 electronic and magnetic properties. Adv. Mater. Interfaces 3, 1500753 (2016)

    Article  Google Scholar 

  44. A. Moreo, S. Yunoki, E. Dagotto, Phase separation scenario for manganese oxides and related materials. Science 283, 2034 (1999)

    Article  Google Scholar 

  45. M.B. Salamon, M. Jaime, The physics of manganites: structure and transport. Rev. Mod. Phys. 73, 583 (2001)

    Article  ADS  Google Scholar 

  46. M. Uehara, S. Mori, C.H. Chen, S.W. Cheong, Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites. Nature 399, 560 (1999)

    Article  ADS  Google Scholar 

  47. E. Dagotto, T. Hotta, A. Moreo, Colossal magnetoresistant materials: the key role of phase separation. Phys. Rep. 344, 1 (2001)

    Article  ADS  Google Scholar 

  48. E.L. Nagaev, Ground state and anomalous magnetic moment of conduction electrons in an antiferromagnetic semiconductor. JEPT Lett. 6, 18 (1967)

    ADS  Google Scholar 

  49. B. Hirpara, K. Gadani, K. Sagapariya, H. Gohil, D. Sanghvi, A.D. Joshi, K. Asokan, P.S. Solanki, N.A. Shah, Resistive switching effect and charge conduction mechanisms in Y0.85Sr0.05MnO3 manganites: dynamic role of defects. Thin Solid Films 685, 151 (2019)

    Article  ADS  Google Scholar 

  50. A. Donga, K.N. Rathod, K. Gadani, D. Dhruv, V.G. Shrimali, A.D. Joshi, K. Asokan, P.S. Solanki, N.A. Shah, Thermal effects on resistive switching in manganite–silicon thin film device. Bull. Mater. Sci. 44, 71 (2021)

    Article  Google Scholar 

  51. S. Parashar, A.R. Raju, C.N.R. Rao, P. Victor, S.B. Krupanidhi, Electrical properties of ferroelectric YMnO3 films deposited on n–type Si (111) substrates. J. Phys. D Appl. Phys. 36, 2134 (2003)

    Article  ADS  Google Scholar 

  52. K. Gadani, K.N. Rathod, V.G. Shrimali, B. Rajyaguru, B. Udeshi, V.S. Vadgama, D. Dhruv, A.D. Joshi, D.D. Pandya, K. Asokan, P.S. Solanki, N.A. Shah, Effect of 200 MeV Ag15+ ion irradiation on structural, microstructural and dielectric properties of Y0.95Sr0.05MnO3 manganite films. Solid State Commun.Commun. 318, 113975 (2020)

    Article  Google Scholar 

  53. K. Gadani, M.J. Keshvani, D. Dhruv, H. Boricha, K.N. Rathod, P. Prajapati, A.D. Joshi, D.D. Pandya, N.A. Shah, P.S. Solanki, Low field magnetoelectric and magnetotransport properties of sol–gel grown nanostructured LaMnO3 manganites. J. Alloys Compd. 719, 47 (2017)

    Article  Google Scholar 

  54. U.D. Khachar, P.S. Solanki, R.J. Choudhary, D.M. Phase, V. Ganesan, D.G. Kuberkar, Room temperature positive magnetoresistance and field effect studies of manganite–based heterostructure. Appl. Phys. A 108, 733 (2012)

    Article  ADS  Google Scholar 

  55. B. Rajyaguru, H. Gohil, H. Dadhich, K. Gadani, V.G. Shrimali, R.J. Choudhary, D.M. Phase, N.A. Shah, P.S. Solanki, Interface based field effect configuration and charge conduction mechanisms for manganite thin film heterostructures. New J. Chem. 47, 13508 (2023)

    Article  Google Scholar 

  56. H. Gohil, B. Rajyaguru, H. Dadhich, K. Gadani, V.G. Shrimali, P.P. Bardapurkar, R.J. Choudhary, D.M. Phase, N.A. Shah, P.S. Solanki, Magnetoresistive nature assisted field effect configuration for LaMnO3/La0.7Ca0.3MnO.3 interface. Phys. B: Condens. Matter 649, 414472 (2023)

    Article  Google Scholar 

  57. K. Gadani, D. Dhruv, Z. Joshi, H. Boricha, K.N. Rathod, M.J. Keshvani, N.A. Shah, P.S. Solanki, Transport properties and electroresistance of a manganite based heterostructure: role of the manganite–manganite interface. Phys. Chem. Chem. Phys. 18, 17740 (2016)

    Article  Google Scholar 

  58. K. Gadani, M.J. Keshvani, B. Rajyaguru, D. Dhruv, B.R. Kataria, A.D. Joshi, K. Asokan, N.A. Shah, P.S. Solanki, Current–voltage characteristics and electroresistance in LaMnO3–δ/La0.7Ca0.3MnO3/LaAlO3 thin film composites. Phys. Chem. Chem. Phys. 19, 29294 (2017)

    Article  Google Scholar 

  59. M. Gal, K. Gadani, D. Dhruv, Z. Joshi, A. Zankat, B. Rajyaguru, A.D. Joshi, K. Asokan, P.S. Solanki, N.A. Shah, Thermionic emission driven resistive switching behavior in Ca and Sr doped YMnO3 thin film devices. Solid State Commun.Commun. 303–304, 113737 (2019)

    Article  Google Scholar 

  60. B. Rajyaguru, K. Gadani, M.J. Keshvani, K.N. Rathod, A.D. Joshi, K. Asokan, R.J. Choudhary, D.M. Phase, N.A. Shah, P.S. Solanki, Investigations on interface charge conduction mechanisms for chemically grown manganite–manganite structure: Hysteretic current–voltage characteristics. Micro Nanostruct. 168, 207324 (2022)

    Article  Google Scholar 

  61. S.G. Choi, H.S. Lee, H. Choi, S.W. Chung, H.H. Park, The effect of Ca substitution on the structural and electrical properties of La0.7Sr03–xCaxMnO3 perovskite manganite films. J. Phys. D Appl. Phys. 46, 425102 (2013)

    Article  Google Scholar 

  62. K. Gadani, K. Sagapariya, K.N. Rathod, H. Boricha, B. Rajyaguru, V.G. Shrimali, A.D. Joshi, K. Asokan, N.A. Shah, P.S. Solanki, Charge transport studies on chemically grown manganite based heterostructures. Curr. Appl. Phys.. Appl. Phys. 19, 563 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Author KG is thankful to Indian Institute of Teacher Education (IITE), Gandhinagar for financial assistance in the form of seed money research project (File No.: IITE/CoR/897/2022). The authors are thankful to Inter University Accelerator Centre (IUAC), New Delhi for financial assistance in the form of research project (File No.: BTR 57309) as well as providing experimental facility at IUAC, New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Joshi.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 75 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gadani, K., Mirza, F., Dhruv, D. et al. Charge transport studies on pulsed laser deposited grown manganite based thin film device. Appl. Phys. A 130, 278 (2024). https://doi.org/10.1007/s00339-024-07388-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07388-9

Keywords

Navigation