Skip to main content
Log in

Crystal structure, Hirshfeld topology analysis, enrichment ratio, energy framework and DFT computational studies of piezoelectric l-histidinium tetrafluoroborate single crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nonlinear L-histidinium tetrafluoroborate (LHFB) single crystals have been grown by the slow evaporation method. The single-crystal XRD confirms the monoclinic lattice system with the P21 space group and explains molecular electron charge density distribution for grown crystals. The diffraction data are refined to a final Refinement factor (R) value of 0.04. The growth rate of LHFB crystal is determined by a morphological study. The 3D Hirshfeld surface gives information about the intermolecular interaction present and the 2D fingerprint plot shows the nature of intermolecular close contact experienced by the molecules in a crystal. Energy frameworks have been computed by the Hirshfeld topology. The value of the enrichment ratio has been deduced to help understand the crystal packing interaction. 3D energy framework is a new way for understanding the topology of all types of interaction of the molecule in the crystal. The lower value of the dielectric loss at higher frequencies has increased the optical quality of the crystal. The piezoelectric property was reported for the first time in LHFB single crystal. The piezoelectric charge coefficient (d33) is found to be 4 pC/N. The promising piezoelectric and dielectric studies of grown crystal make it suitable for various optoelectronics, energy harvesting, piezoelectric transducers and patch antennae for wireless communication applications. Mechanical properties reveal that the LHFB crystals belong to the softer nature. The voids present in the grown crystal were estimated at different isosurface values, which give information about the mechanical strength and porosity of the compound. The computing of geometric parameters, optimization energies, frontier molecular orbital energies and molecular surface electrostatic potential were performed using the Gaussian 09 program package in the DFT/B3LYP/6-311++G(d,p) basis set.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Not applicable.

Data and code availability

Not applicable.

References

  1. S. Guerin, J. O’Donnell, E.U. Haq, C. McKeown, C. Silien, F.M.F. Rhen, T. Soulimane, S.A.M. Tofail, D. Thompson, Phys. Rev. Lett. 122, 047701 (2019). https://doi.org/10.1103/PhysRevLett.122.047701

    Article  ADS  Google Scholar 

  2. M. Fleck, Petrosyan AM, Springer International Publishing, Switzerland, (2014) https://doi.org/10.1007/978-3-319-06299-0

  3. S.G. Raj, G.R. Kumar, R. Mohan, S. Pandi, R. Jayavel, Mater. Chem. Phys. 90, 144–147 (2005). https://doi.org/10.1016/j.matchemphys.2004.10.026

    Article  Google Scholar 

  4. N.L. John, S. Abraham, D. Sajan, R. Philip, N. Joy, R. Chitra, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 226, 117615 (2020). https://doi.org/10.1016/j.saa.2019.117615

    Article  Google Scholar 

  5. M.D. Aggarwal, J. Choi, W.S. Wang, K. Bhat, R.B. Lal, A.D. Shields, B.G. Penn, D.O. Frazier, J. Cryst. Growth 204, 179–182 (1999). https://doi.org/10.1016/S0022-0248(99)00200-6

    Article  ADS  Google Scholar 

  6. J. Ramajothi, S. Dhanuskodi, Cryst. Res. Technol. 38, 986–991 (2003). https://doi.org/10.1016/S0022-0248(99)00200-6

    Article  Google Scholar 

  7. P.P. Kumar, V. Manivannan, S. Tamilselvan, S. Senthil, V.A. Raj, P. Sagayaraj, Madhavan, J. Opt. Commun. 281, 2989–2995 (2008). https://doi.org/10.1016/j.optcom.2008.01.058

    Article  ADS  Google Scholar 

  8. T. Dammak, N. Fourati, Y. Abid, H. Boughzala, A. Mlayah, C. Minot, Spectrochim. Acta Part A 66, 1097–1101 (2007). https://doi.org/10.1016/j.saa.2006.05.018

    Article  ADS  Google Scholar 

  9. C.A. Gonsago, S. Pandi, H.M. Albert, A.J.A. Pragasam, Int. J. Appl Phys and Maths 2, 54–57 (2012). https://doi.org/10.7763/IJAPM.2012.V2.53

    Article  Google Scholar 

  10. J. Ramajothi, S. Dhanuskodi, J. Cryst. Growth 289, 217–223 (2006). https://doi.org/10.1016/j.jcrysgro.2005.10.103

    Article  ADS  Google Scholar 

  11. V. Kannan, R.B. Ganesh, P. Ramasamy, Cryst. Growth Des. 6, 1876–1880 (2006). https://doi.org/10.1021/cg0601960

    Article  Google Scholar 

  12. N. Tyagi, N. Sinha, H. Yadav, B. Kumar, Acta Cryst. B 72, 593–601 (2016). https://doi.org/10.1107/S2052520616007629

    Article  Google Scholar 

  13. N. Sinha, B.K. Sahas, K. Singh, N. Kumar, M.K. Singh, G.C. Gupta, B. Budakoti, Kumar, Cryst. Res. Technol. 44, 167–172 (2009). https://doi.org/10.1002/crat.200800190

    Article  Google Scholar 

  14. U. Flierler, D. Stalke, Struct. Bond. 146, 1–20 (2012)

    Article  Google Scholar 

  15. C. Gatti, P. Macchi, Modern Charge Density Analysis Springer (Dordrecht Heidelberg London, New York, 2012)

  16. H. Cong, H. Zhang, S. Sun, Y. Yu, W. Yu, H. Yu, J. Zhang, J. Wanga, R.I. Boughton, J. Appl. Cryst. 43, 308–319 (2010). https://doi.org/10.1107/S0021889809052339

    Article  ADS  Google Scholar 

  17. A.S.K. Seth, P.C. Mandal, T. Kar, S. Mukhopadhyay, J. Mol. Struct. 994, 109–116 (2011). https://doi.org/10.1016/j.molstruc.2011.03.004

    Article  ADS  Google Scholar 

  18. C. Jelsch, K. Ejsmont, L. Huder, Chem. Cryst. Eng. 1, 119–128 (2014). https://doi.org/10.1107/S2052252514003327

    Article  Google Scholar 

  19. K.M. Ok, E.O. Chi, P.S. Halasyamani, Chem. Soc. Rev. 35, 710–717 (2006). https://doi.org/10.1039/B511119F

    Article  Google Scholar 

  20. P. Dhawan, P. Kumar, A. Saini, R. Jha, K. Grover, S. Goel, N. Tyagi, H. Yadav, Mater. Res. Bull. 169, 112516 (2024). https://doi.org/10.1016/j.materresbull.2023.112516

    Article  Google Scholar 

  21. S. Dhanuskodi, J. Ramajothi, J. Cryst. Res. Technol. 39, 592–597 (2004). https://doi.org/10.1002/crat.200310229

    Article  Google Scholar 

  22. J. Prywer, J. Cryst. Growth 270, 699–710 (2004). https://doi.org/10.1016/j.jcrysgro.2004.06.046

    Article  ADS  Google Scholar 

  23. R.A. Sullivan, R. Davey, Cryst. Eng. Comm. 17, 1015–1023 (2015). https://doi.org/10.1039/C4CE01857E

    Article  Google Scholar 

  24. G.M. Sheldrick, Acta Cryst 64, 112–122 (2008). https://doi.org/10.1107/S0021889811043202

    Article  Google Scholar 

  25. L.J. Farrugia, J. Appl. Cryst. 45, 849–854 (2012). https://doi.org/10.1107/S0021889812029111

    Article  ADS  Google Scholar 

  26. K. Meindl, J. Henn, Acta Cryst. 64, 404–418 (2008). https://doi.org/10.1107/S0108767308006879

    Article  Google Scholar 

  27. N. Tyagi, N. Sinha, H. Yadav, B. Kumar, RSC Adv. 6, 24565–24576 (2016). https://doi.org/10.1039/C5RA18983G

    Article  ADS  Google Scholar 

  28. C.B. Hubschle, M.G. Sheldrick, B. Dittrich, J. Appl. Cryst. 44, 1281–1284 (2011). https://doi.org/10.1107/S0021889811043202

    Article  ADS  Google Scholar 

  29. M.A. Spackman, D. Jayatilaka, Cryst. Eng. Comm. 11, 19–32 (2009). https://doi.org/10.1039/B818330A

    Article  Google Scholar 

  30. N. Tyagi, H. Yadav, A. Hussaina, B. Kumar, J. Mol. Struct. 1224, 129190 (2021). https://doi.org/10.1016/j.molstruc.2020.129190

    Article  Google Scholar 

  31. M.A. Spackman, Phys. Scr. 87, 048103 (2013). https://doi.org/10.1088/0031-8949/87/04/048103

    Article  ADS  Google Scholar 

  32. S.K. Wolff, D.J. Grimwood, J.J. McKinnon, M.J. Turner, D. Jayatilaka, M.A. Spackman, CrystalExplorer 3.1 (University of Western Australia, 2012)

    Google Scholar 

  33. G.A. Senchyk, A.B. Lysenko, H. Krautscheid, K.V. Domasevitch, Acta Cryst. E 76, 780–784 (2020). https://doi.org/10.1107/S205698902000585X

    Article  Google Scholar 

  34. J.T. Michael, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Cryst. Eng. Comm. 13, 1804–1813 (2011). https://doi.org/10.1039/C0CE00683A

    Article  Google Scholar 

  35. U.M. Sumaya, E. Sankar, K.A. MohanaKrishnan, K. Birunthaa, G. Usha, Acta Cryst. E 74, 878–883 (2018). https://doi.org/10.1107/S2056989018007971

    Article  Google Scholar 

  36. C.F. Mackenzie, P.R. Spackman, D. Jayatilaka, M.A. Spackman, IUCrJ 4, 575–587 (2017). https://doi.org/10.1107/S205225251700848X

    Article  Google Scholar 

  37. C. Jelsch, S. Soudani, C.B. Nasr, IUCrJ 2, 327–340 (2015). https://doi.org/10.1107/S2052252515003255

    Article  Google Scholar 

  38. M.G. Babashkina, K. Robeyns, Y. Filinchuk, D.A. Safin, New J. Chem. 40, 1230–1236 (2016). https://doi.org/10.1107/S2052252515003255

    Article  Google Scholar 

  39. A.D. Santo, H. Pérez, G.A. Echeverr, O.E. Piro, R.A. Iglesias, R.E. Carbonio, A.B. Altabef, D.M. Gil, RSC Adv. 8, 23891–23902 (2018). https://doi.org/10.1039/C8RA04452J

    Article  ADS  Google Scholar 

  40. K.C. Kao, Dielectric Phenomena in Solids (Elsevier Academic Press, California, 2004)

    Google Scholar 

  41. H. Yadav, N. Sinha, B. Kumar, Cryst. Growth Des. 15, 4908–4917 (2015). https://doi.org/10.1021/acs.cgd.5b00792

    Article  Google Scholar 

  42. S. Guerin, S.A.M. Tofail, D. Thompson, Cryst. Growth Des. 18(9), 4844–4848 (2018). https://doi.org/10.1021/acs.cgd.8b00835

    Article  Google Scholar 

  43. K. Sangwal, Cryst. Res. Technol. 44, 1019–1037 (2009). https://doi.org/10.1002/crat.200900385

    Article  Google Scholar 

  44. N. Tyagi, N. Sinha, H. Yadav, B. Kumar, Phys. B 462, 18–24 (2015). https://doi.org/10.1016/j.physb.2015.01.005

    Article  Google Scholar 

  45. M.J. Turner, J.J. McKinnon, D. Jayatilaka, M.A. Spackman, Cryst. Eng. Comm. 13, 1804–1813 (2011). https://doi.org/10.1039/C0CE00683A

    Article  Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al. Gaussian 09 (Gaussian Inc., Wallingford, 2016)

  47. A.D. Becke, J. Chem. Phys. 98, 5648–5652 (1993). https://doi.org/10.1063/1.464913

    Article  ADS  Google Scholar 

  48. C. Lee, Y. Weitao, G.P. Robert, Phys. Rev. B 37(2), 785 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  ADS  Google Scholar 

  49. J. Aihara, J. Phys. Chem. A 103(37), 7487–7495 (1999). https://doi.org/10.1021/jp990092i

    Article  Google Scholar 

  50. R.G. Parr, W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford Science Publications, New York, 1989)

    Google Scholar 

  51. N. Venkatesh, B. Naveen, A. Venugopal, G. Suresh, V. Mahipal, P. Manojkumar, T. Parthasarathy, J. Mol. Struct. 1196, 462–477 (2019). https://doi.org/10.1016/j.molstruc.2019.06.083

    Article  ADS  Google Scholar 

  52. N.M.O. Boyle, A.L. Tenderholt, K.M. Langner, J. Comput. Chem. 29, 839–845 (2008). https://doi.org/10.1002/jcc.20823

    Article  Google Scholar 

  53. G. Paul, F.D. Proft, W. Langenaeker, Chem. Rev. 103, 1793–1874 (2003). https://doi.org/10.1021/cr990029p

    Article  Google Scholar 

  54. R.G. Parr, V.S. László, L. Shubin, J. Am. Chem. Soc. 121(9), 1922–1924 (1999). https://doi.org/10.1021/ja983494x

    Article  Google Scholar 

  55. A.Z. El-Sonbati, M.A. Diab, A.A. El-Bindary, S.M. Morgan, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 127, 310–328 (2014). https://doi.org/10.1016/j.saa.2014.02.037

    Article  ADS  Google Scholar 

  56. K. Daniel, M. El Helou, C. Gemel, G. Witte, Cryst. Growth Des. 8(8), 3053–3057 (2008). https://doi.org/10.1021/cg800195u

    Article  Google Scholar 

  57. F.J. Luque, J.M. López, M. Orozco, S. Miertus, E. Scrocco, J. Tomasi, Chem. Phys. 117 Theoretical Chemistry Accounts 103 (2000), 343–345 (1981). https://doi.org/10.1007/s002149900013

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Nidhi Tyagi expresses her gratitude to Principal, Shivaji College for encouragement and support for present research work. Dr. Nidhi Sinha would like to thank the Principal, SGTB Khalsa College for encouragement in research work. Dr. Harsh Yadav is thankful to the Vice Chancellor, Netaji Subhas University of Technology for his continuous support to carry out research work and Dr. Pradeep Kumar would like to express his gratitude to the Principal, Hansraj College to providing support for this research work.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, investigation, resources, supervision, resources, writing—review and editing were performed by NT, NS and BK. Data collections, methodology, investigations, writing—review and editing were performed by HY and PK. All the authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Nidhi Tyagi or Binay Kumar.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, N., Sinha, N., Yadav, H. et al. Crystal structure, Hirshfeld topology analysis, enrichment ratio, energy framework and DFT computational studies of piezoelectric l-histidinium tetrafluoroborate single crystal. Appl. Phys. A 130, 231 (2024). https://doi.org/10.1007/s00339-024-07369-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07369-y

Keywords

Navigation