Skip to main content
Log in

Comparative research on the microstructure and mechanical properties of traditional and induction heating aided extreme-high-speed laser cladding of Ni60 coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Extreme-high-speed laser cladding (EHLA), as a novel surface treatment technique, has attracted great attention because of its high cladding rate and good performance of cladding coatings. However, when depositing coatings with high cracking susceptibility, such as Ni60 coatings, cracks are difficult to avoid. Therefore, an extreme-high-speed laser-induction hybrid cladding technology (EH-LIHC) was innovatively proposed in this study. The effects of different preheating temperatures on the surface morphology, internal defects, microstructure, and mechanical properties of Ni60 coatings that were deposited by EHLA and EH-LIHC were analyzed. The results show that the roughness of the coating deposited by EHLA is 26.228 μm. However, the surface roughness of the coating deposited by EH-LIHC at 400 ℃ decreases to 14.316 μm. Simultaneously, the pores- and cracks-free Ni60 coating was deposited at 400 ℃. The coating dilution rate obviously increases as the preheating temperature rises. When the preheating temperature rises, the size of the grains and precipitates also increases. However, although Fe elemental diffusion is increased, there is no significant effect on the properties of the coating. The hardness of the coating fluctuates between 700 and 900 HV, nearly three times that of the substrate. As the preheating temperature rises, the coating’s wear mechanism shifts from abrasive to abrasive and adhesive wear, and eventually back to abrasive wear. The improvement of wear resistance of the Ni60 coating deposited at 400 ℃ was mainly attributed to its high hardness and uniform and dense microstructure. The proposed EH-LIHC technique provides a promising method for the efficient deposit of crack-free coatings with good properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All research data supporting this publication are directly available within this publication.

References

  1. F.F. Khan, G. Bae, K. Kang, S. Kumar, T. Jeong, C. Lee, Surf. Coatings Technol. 204, 345 (2009)

    Google Scholar 

  2. S.M. Gateman, S.A. Alidokht, E. Mena-Morcillo, R. Schulz, R.R. Chromik, A.M. Kietzig, I.P. Parkin, J. Mauzeroll, Surf. Coatings Technol. 426, 127790 (2021)

    Google Scholar 

  3. D. Fu, T.A. Kurniawan, R. Avtar, P. Xu, M.H.D. Othman, Chemosphere 271, 129861 (2021)

    PubMed  Google Scholar 

  4. S. Sitthipong, P. Towatana, A. Sitticharoenchai, C. Meengam, Mater. Today Proc. 4, 1492 (2017)

    Google Scholar 

  5. X. Qiao, Y.M. Wang, W.X. Weng, B.L. Liu, Q. Li, Ceram. Int. 44, 21564 (2018)

    Google Scholar 

  6. W. Shang, F. Wu, S. Jiang, Y. Wen, N. Peng, J. Jiang, J. Mol. Liq. 330, 115606 (2021)

    Google Scholar 

  7. T. Yamaguchi, K. Tanaka, H. Hagino, Int. J. Refract. Met. Hard Mater. 110, 106020 (2023)

    Google Scholar 

  8. B. Wen, J. Zhou, P. Tang, X. Jia, W. Zhou, J. Huang, J. Hazard. Mater. 446, 130622 (2022)

    PubMed  Google Scholar 

  9. Q. Zhang, Q. Wang, B. Han, M. Li, C. Hu, J. Wang, J. Alloys Compd. 947, 169517 (2023)

    Google Scholar 

  10. K. Wang, D. Du, G. Liu, Z. Pu, B. Chang, J. Ju, Opt. Laser Technol. (2021). https://doi.org/10.1016/j.optlastec.2020.106504

    Google Scholar 

  11. A. Meghwal, S. Pinches, A. Anupam, L. Lie, P. Munroe, C.C. Berndt, A. Siao Ming Ang, Intermetallics 152, 107769 (2023)

    Google Scholar 

  12. W. Yuan, R. Li, Z. Chen, J. Gu, Y. Tian, Surf. Coatings Technol. 405, 126582 (2021)

    Google Scholar 

  13. J. Zhu, H. Xie, Z. Hu, P. Chen, Q. Zhang, Surf. Coatings Technol. 206, 1396 (2011)

    Google Scholar 

  14. S. Zhou, T. Zhang, Z. Xiong, X. Dai, C. Wu, Z. Shao, Opt. Laser Technol. 59, 131 (2014)

    ADS  Google Scholar 

  15. S. Zhou, X. Zeng, Q. Hu, Y. Huang, Appl. Surf. Sci. 255, 1646 (2008)

    ADS  Google Scholar 

  16. S. Zhou, Y. Huang, X. Zeng, Q. Hu, Mater. Sci. Eng. A 480, 564 (2008)

    Google Scholar 

  17. S. Zhou, X. Dai, Appl. Surf. Sci. 256, 4708 (2010)

    ADS  Google Scholar 

  18. S. Zhou, X. Dai, X. Zeng, Appl. Surf. Sci. 255, 8494 (2009)

    ADS  Google Scholar 

  19. L. Meng, P. Sheng, X. Zeng, J. Mater. Res. Technol. 16, 1732 (2022)

    Google Scholar 

  20. L. Meng, B. Zhu, X. Liu, X. Zeng, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 54, 3118 (2023)

    ADS  Google Scholar 

  21. Q. Wang, F.Q. Chen, Q. Li, L. Zhang, H. Jin, J.W. Zhang, Mater. Chem. Phys. 291, 126678 (2022)

    Google Scholar 

  22. C. Du, L. Hu, X. Ren, Y. Li, F. Zhang, P. Liu, Y. Li, Surf. Coatings Technol. 424, 127617 (2021)

    Google Scholar 

  23. P. Farahmand, R. Kovacevic, J. Mater. Process. Technol. 222, 244 (2015)

    Google Scholar 

  24. B. Shi, T. Li, Z. Guo, X. Zhang, H. Zhang, Opt. Laser Technol. 149, 107805 (2022)

    Google Scholar 

  25. D.Z. Wang, Q.W. Hu, X.Y. Zeng, Surf. Coatings Technol. 274, 51 (2015)

    Google Scholar 

  26. K. Zhang, S. Wang, W. Liu, R. Long, Appl. Surf. Sci. 317, 839 (2014)

    ADS  Google Scholar 

  27. D. Gu, Y.C. Hagedorn, W. Meiners, G. Meng, R.J.S. Batista, K. Wissenbach, R. Poprawe, Acta Mater. 60, 3849 (2012)

    ADS  Google Scholar 

  28. P. Gu, T. Qi, L. Chen, T. Ge, X. Ren, Int. J. Refract. Met. Hard Mater. 105, 105834 (2022)

    Google Scholar 

  29. D. Gu, Y. Shen, Mater. Des. 30, 2903 (2009)

    Google Scholar 

  30. Y. Sun, L. Chen, L. Li, X. Ren, Opt. Laser Technol. 132, 106509 (2020)

    Google Scholar 

  31. C.L.A. Leung, S. Marussi, R.C. Atwood, M. Towrie, P.J. Withers, P.D. Lee, Nat. Commun. 9, 1 (2018)

    Google Scholar 

  32. P. Zhang, X. Zhou, X. Cheng, H. Sun, H. Ma, Y. Li, Addit. Manuf. 32, 101026 (2020)

    Google Scholar 

  33. L. Zhou, J. Sun, J. Chen, W. Chen, Y. Ren, Y. Niu, C. Li, W. Qiu, J. Alloys Compd. 928, 167130 (2022)

    Google Scholar 

  34. R. Li, Y. Shi, Z. Wang, L. Wang, J. Liu, W. Jiang, Appl. Surf. Sci. 256, 4350 (2010)

    ADS  Google Scholar 

  35. X.B. Zhou, J.T.M. De Hosson, Acta Mater. 44, 421 (1996)

    ADS  Google Scholar 

  36. H. Yue, N. Lv, C. Guo, L. Zhao, Q. Li, J. Zhang, Y. Zhang, Opt. Laser Technol. 158, 108802 (2023)

    Google Scholar 

  37. N. Aeronautics, 73, 491 (1980).

  38. H. Ali, L. Ma, H. Ghadbeigi, K. Mumtaz, Mater. Sci. Eng. A 695, 211 (2017)

    Google Scholar 

  39. W. Li, J. Liu, Y. Zhou, S. Wen, Q. Wei, C. Yan, Y. Shi, Scr. Mater. 118, 13 (2016)

    ADS  Google Scholar 

  40. Z. Chong, Y. Sun, W. Cheng, C. Han, L. Huang, C. Su, L. Jiang, Mater. Today Commun. 33, 104417 (2022)

    Google Scholar 

  41. Z. Chao, K. Dejun, Diam. Relat. Mater. 133, 109762 (2023)

    ADS  Google Scholar 

  42. A. Kiran, M. Koukolíková, J. Vavřík, M. Urbánek, J. Džugan, Materials (Basel) 14, 5129 (2021)

    PubMed  ADS  Google Scholar 

  43. Y. Huang, Opt. Laser Technol. 43, 965 (2011)

    ADS  Google Scholar 

  44. L. Meng, B. Zhu, R. Yan, X. Zeng, Q. Hu, D. Wang, J. Mater. Res. Technol. 13, 1431 (2021)

    Google Scholar 

  45. Q. Chen, Y. Zhao, S. Strayer, Y. Zhao, K. Aoyagi, Y. Koizumi, A. Chiba, W. Xiong, A.C. To, Addit. Manuf. 37, 101642 (2021)

    Google Scholar 

  46. H.H. Wang, H.J. Li, X.H. Shi, X.S. Liu, J.A. Kong, H. Zhou, Ceram. Int. 46, 19537 (2020)

    Google Scholar 

  47. W. Wu, S. Ye, R. Wang, C. Zhang, Y. Zhang, X. Lu, J. Mater. Res. Technol. 23, 1609 (2023)

    Google Scholar 

  48. Y.T. Dong, B. Yan, Q.L. Deng, Mater. Guid. 24, 10 (2010)

    Google Scholar 

  49. J. Yang, B. Bai, H. Ke, Z. Cui, Z. Liu, Z. Zhou, H. Xu, J. Xiao, Q. Liu, H. Li, Opt. Laser Technol. 144, 107431 (2021)

    Google Scholar 

  50. C. Nagarjuna, A. Sharma, K. Lee, S.J. Hong, B. Ahn, J. Mater. Res. Technol. 22, 1708 (2023)

    Google Scholar 

  51. D.S. Shim, G.Y. Baek, E.M. Lee, Mater. Sci. Eng. A 682, 550 (2017)

    Google Scholar 

  52. Y. Zhao, T. Yu, C. Guan, J. Sun, X. Tan, Ceram. Int. 45, 20824 (2019)

    Google Scholar 

  53. Y. Li, K. Wang, H. Fu, X. Guo, J. Lin, Appl. Surf. Sci. 585, 152703 (2022)

    Google Scholar 

  54. Z. Bergant, J. Grum, J. Therm. Spray Technol. 18, 380 (2009)

    ADS  Google Scholar 

  55. M. Zhang, D. Wang, L. He, X. Ye, W. Ouyang, Z. Xu, W. Zhang, X. Zhou, Opt. Laser Technol. 149, 107845 (2022)

    Google Scholar 

  56. G. Hu, H. Meng, J. Liu, Appl. Surf. Sci. 308, 363 (2014)

    ADS  Google Scholar 

  57. S. Zhang, J. Zhou, B. Guo, H. Zhou, Y. Pu, J. Chen, Mater. Sci. Eng. A 491, 47 (2008)

    Google Scholar 

  58. B. Bhushan, Chapter 5 friction, in Introduction to tribology. ed. by T. Ren (Wiley, New York, 2013)

    Google Scholar 

  59. H.N. Xuan, L.Y. Chen, N. Li, H. Wang, C. Zhao, M. Bobrov, S. Lu, L.C. Zhang, Mater. Chem. Phys. 292, 126773 (2022)

    Google Scholar 

  60. Y. Cai Zhao, Y. He, J. Zhang, C. Meng, X. Zhang, S. Zhang, Surf. Coatings Technol. 452, 129049 (2023)

    Google Scholar 

  61. X.P. Tao, S. Zhang, C.H. Zhang, C.L. Wu, J. Chen, A.O. Abdullah, Surf. Coatings Technol. 342, 76 (2018)

    Google Scholar 

  62. G. Hu, H. Meng, J. Liu, Appl. Surf. Sci. 317, 378 (2014)

    ADS  Google Scholar 

  63. J.M. Guilemany, C.R.C. Lima, N. Cinca, J.R. Miguel, Surf. Coatings Technol. 201, 2072 (2006)

    Google Scholar 

  64. D. Kesavan, M. Kamaraj, Surf. Coatings Technol. 204, 4034 (2010)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the projects supported by the Youth Science Foundation of Jiangsu Province (Grant No. BK20210754), the Natural Science Foundation for Post-doctoral Scientists of China (Grant No. 2021M101519), the Natural Science Foundation of China (Grant No. U21A20138, 51975261).

Author information

Authors and Affiliations

Authors

Contributions

SL: conceptualization, investigation, writing—original draft. LC: microstructural observations, methodology, reviewing and editing. LZ: methodology. XZ: methodology. XR: conceptualization, supervision, writing—reviewing and editing.

Corresponding author

Correspondence to Xudong Ren.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Chen, L., Zhu, L. et al. Comparative research on the microstructure and mechanical properties of traditional and induction heating aided extreme-high-speed laser cladding of Ni60 coatings. Appl. Phys. A 130, 159 (2024). https://doi.org/10.1007/s00339-024-07299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07299-9

Keywords

Navigation