Skip to main content
Log in

Effects of post-deposition annealing on BaTiO3/4H-SiC MOS capacitors using aerosol deposition method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

High-k oxide materials for metal–oxide–semiconductor field-effect transistors and metal–oxide–semiconductor (MOS) structure on SiC have been explored to enhance SiC-based device performance. In our experiments, the MOS capacitors with a high-k barium titanate (BaTiO3) insulating layer were fabricated using the aerosol deposition (AD) method, and post-deposition annealed in O2 atmospheres. We examined the effects of post-deposition annealing on the BaTiO3 films and their impact on the surface and electrical characteristics of MOS capacitors. The crystallinity and surface morphologies of the BaTiO3 films were analyzed by X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and atomic force microscopy. We conducted the electrical analysis through current–voltage and capacitance–voltage (CV) measurements. The post-deposition annealing process effectively reduced the gate leakage current of BaTiO3/4H-SiC and elevated the rectification ratio from 9.12 × 108 to 1.61 × 109. CV characteristics were measured at 1 MHz to investigate the oxide defect charges inside the MOS capacitors. Near-interface trap density (\({N}_{{\text{it}}}\)) decreased from 9.10 × 1011 to 5.53 × 1011 cm−2 due to post-annealing, which diminished flat band voltage hysteresis. Fixed oxide charge density (\({Q}_{{\text{f}}}\)) also diminished from 4.00 × 1011 to 3.58 × 1011 cm−2, and the oxygen vacancies were compensated by the oxygen atoms introduced from the O2 during the post-deposition annealing. Our findings suggest that the post-deposition annealed process significantly influences surface and electrical properties during BaTiO3 thin film deposition using AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. X.-R. Wang et al., Electrical characterization of HfO 2/4H-SiC and HfO 2/Si MOS structures. In: 2022 19th China International Forum on Solid State Lighting & 2022 8th International Forum on Wide Bandgap Semiconductors (SSLCHINA: IFWS). IEEE, pp. 34–37 (2023). https://doi.org/10.1109/SSLChinaIFWS57942.2023.10071123

  2. S.W. Jung, S.M. Koo, BaTiO3–SiC nanopowder composite-based metal-insulator-semiconductor structure prepared by aerosol deposition. J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 16(11), 11402–11405 (2016). https://doi.org/10.1166/jnn.2016.13517

    Article  Google Scholar 

  3. Z. Wang, L. Liu, Simulation research of 4H-SiC double-trench MOSFET with high-k gate dielectric materials. In: 2021 International workshop on advanced patterning solutions (IWAPS). IEEE, pp. 1–4 (2021). https://doi.org/10.1109/IWAPS54037.2021.9671233

  4. F. Zhuo, U.R. Eckstein, N.H. Khansur, C. Dietz, D. Urushihara, T. Asaka et al., Temperature-induced changes of the electrical and mechanical properties of aerosol-deposited BaTiO3 thick films for energy storage applications. J. Am. Ceram. Soc. 105(6), 4108–4121 (2022). https://doi.org/10.1111/jace.18377

    Article  Google Scholar 

  5. C. Wang, H.J. Kim, F.Y. Meng, H.K. Kim, Y. Li, Z. Yao, N.Y. Kim, Room temperature fabrication of MIMCAPs via aerosol deposition. IEEE Electron Device Lett. 37(2), 220–223 (2015). https://doi.org/10.1109/LED.2015.2506406

    Article  ADS  Google Scholar 

  6. D.F. Cui, H.S. Wang, Z.H. Chen, Y.L. Zhou, H.B. Lu, G.Z. Yang et al., Crystallographic and microstructural studies of BaTiO3 thin films grown on SrTiO3 by laser molecular beam epitaxy. J. Vacuum Sci. Technol. A Vacuum Surf. Films 15(2), 275–278 (1997). https://doi.org/10.1116/1.580524

    Article  ADS  Google Scholar 

  7. H. Basantakumar Sharma, H.N.K. Sarma, A. Mansingh, Ferroelectric and dielectric properties of sol-gel processed barium titanate ceramics and thin films. J. Mater. Sci. 34(6), 1385–1390 (1999). https://doi.org/10.1023/A:1004578905297

    Article  ADS  Google Scholar 

  8. J.H. Kim, S. Hishita, The effects of substrates on the thin-film structures of BaTiO3. J. Mater. Sci. 30, 4645–4650 (1995). https://doi.org/10.1007/BF01153074

    Article  ADS  Google Scholar 

  9. S. Yang, H. Kim, R.C. Pawar et al., Dielectric characteristics of a barium titanate film deposited by Nano Particle Deposition System (NPDS). Int. J. Precis. Eng. Manuf. 16, 1029–1034 (2015). https://doi.org/10.1007/s12541-015-0133-y

    Article  Google Scholar 

  10. M.Y. Cho, D.W. Lee, I.S. Kim, W.H. Lee, J.W. Yoo, P.J. Ko et al., Formation of silver films for advanced electrical properties by using aerosol deposition process. Jpn. J. Appl. Phys.. J. Appl. Phys. 57(11), 11UF05 (2018). https://doi.org/10.7567/JJAP.57.11UF05

    Article  Google Scholar 

  11. M. Bentzen, J. Maier, U. Eckstein, J. He, A. Henss, N. Khansur, J. Glaum, Enhanced grain growth and dielectric properties in aerosol deposited BaTiO3. J. Eur. Ceram. Soc. 43(10), 4386–4394 (2023). https://doi.org/10.1016/j.jeurceramsoc.2023.03.012

    Article  Google Scholar 

  12. C. Wang, Y. Li, Z. Yao et al., Effect of sulphur hexafluoride gas and post-annealing treatment for inductively coupled plasma etched barium titanate thin films. Nanoscale Res. Lett. 9, 496 (2014). https://doi.org/10.1186/1556-276X-9-496

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. H.K. Kim, S.H. Lee, S. In Kim, C. Woo Lee, J. Rag Yoon, S.G. Lee, Y.H. Lee, Dielectric strength of voidless BaTiO3 films with nano-scale grains fabricated by aerosol deposition. J. Appl. Phys. (2014). https://doi.org/10.1063/1.4851675

    Article  Google Scholar 

  14. T. Tunkasiri, G. Rujijanagul, Dielectric strength of fine grained barium titanate ceramics. J. Mater. Sci. Lett. 15, 1767–1769 (1996). https://doi.org/10.1007/BF00275336

    Article  Google Scholar 

  15. B.C. Shin, H.G. Kim, Partial discharge, microcracking, and breakdown in BaTiO3 ceramics. Ferroelectrics 77(1), 161–166 (1988). https://doi.org/10.1080/00150198808223239

    Article  ADS  Google Scholar 

  16. A. Young, G. Hilmas, S.C. Zhang, R.W. Schwartz, Effect of liquid-phase sintering on the breakdown strength of barium titanate. J. Am. Ceram. Soc. 90(5), 1504–1510 (2007). https://doi.org/10.1111/j.1551-2916.2007.01637.x

    Article  Google Scholar 

  17. M. Sochacki, P. Firek, N. Kwietniewski, J. Szmidt, W. Rzodkiewicz, Electronic properties of BaTiO3/4H-SiC interface. Mater. Sci. Eng. B 176(4), 301–304 (2011). https://doi.org/10.1016/j.mseb.2010.08.012

    Article  Google Scholar 

  18. J.B. Babu, G. Madeswaran, X.L. Chen, R. Dhanasekaran, Effect of oxygen vacancies on ferroelectric behavior of Na1/2Bi1/2TiO3–BaTiO3 single crystals. Mater. Sci. Eng. B 156(1–3), 36–41 (2009). https://doi.org/10.1016/j.mseb.2008.11.007

    Article  Google Scholar 

  19. A. Kumar, C. Wang, F.Y. Meng, J.G. Liang, B.F. Xie, Z.L. Zhou et al., Aerosol deposited BaTiO3 film based interdigital capacitor and squared spiral capacitor for humidity sensing application. Ceram. Int. 47(1), 510–520 (2021). https://doi.org/10.1016/j.ceramint.2020.08.158

    Article  Google Scholar 

  20. E. Baek, Y.S. Yun, H.K. Kim, S.H. Lee, S.G. Lee, I.H. Im, Y.H. Lee, Effect of postannealing on (Ca0.7Sr0.3)(Zr0.8Ti0.2)O3 films on Pt and Cu substrates fabricated by aerosol deposition. J. Nanosci. Nanotechnol.Nanosci. Nanotechnol. 15, 8478–8483 (2015). https://doi.org/10.1166/jnn.2015.11453

    Article  Google Scholar 

  21. S. Yu, M.S. Kang, H.K. Kim, Y.H. Lee, S.M. Koo, Electrical properties of the Al2O3/4H-SiC interface prepared by aerosol deposition. Sci. Adv. Mater. 8(2), 445–449 (2016). https://doi.org/10.1166/sam.2016.2536

    Article  Google Scholar 

  22. J. Su, J. Zhang, Recent development on modification of synthesized barium titanate (BaTiO3) and polymer/BaTiO3 dielectric composites. J. Mater. Sci. Mater. Electron. 30, 1957–1975 (2019). https://doi.org/10.1007/s10854-018-0494-y

    Article  Google Scholar 

  23. M.J. Pan, C.A. Randall, A brief introduction to ceramic capacitors. IEEE Electr. Insul. Mag.Electr. Insul. Mag. 26(3), 44–50 (2010). https://doi.org/10.1109/MEI.2010.5482787

    Article  Google Scholar 

  24. J. Döring, D. Lang, L. Wehmeier, F. Kuschewski, T. Nörenberg, S.C. Kehr, L.M. Eng, Low-temperature nanospectroscopy of the structural ferroelectric phases in single-crystalline barium titanate. Nanoscale 10(37), 18074–18079 (2018). https://doi.org/10.1039/C8NR04081H

    Article  PubMed  Google Scholar 

  25. J. Akedo, Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. J Therm Spray Tech 17, 181–198 (2008). https://doi.org/10.1007/s11666-008-9163-7

    Article  ADS  Google Scholar 

  26. E.S. Kim, J.G. Liang, C. Wang et al., Inter-digital capacitors with aerosol-deposited high-K dielectric layer for highest capacitance value in capacitive super-sensing applications. Sci. Rep. 9, 680 (2019). https://doi.org/10.1038/s41598-018-37416-7

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  27. J. Akedo, Aerosol deposition of ceramic thick films at room temperature: densification mechanism of ceramic layers. J. Am. Ceram. Soc. 89(6), 1834–1839 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x

    Article  Google Scholar 

  28. S.Y. Moon, S.W. Jung, H.J. Lee, D.W. Byun, M.C. Shin, M.A. Schweitz, S.M. Koo, Effect of nitrogen and oxygen annealing on (Al0.1Ga0.9) 2O3/4H-SiC heterojunction diodes. Thin Solid Films 751, 139204 (2022). https://doi.org/10.1016/j.tsf.2022.139204

    Article  ADS  Google Scholar 

  29. C.Y. Huang, R.H. Horng, D.S. Wuu, L.W. Tu, H.S. Kao, Thermal annealing effect on material characterizations of β-Ga2O3 epilayer grown by metal organic chemical vapor deposition. Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4773247

    Article  PubMed  PubMed Central  Google Scholar 

  30. Z. Yao, C. Wang, Y. Li et al., Effects of starting powder and thermal treatment on the aerosol deposited BaTiO3 thin films toward less leakage currents. Nanoscale Res. Lett. 9, 435 (2014). https://doi.org/10.1186/1556-276X-9-435

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  31. H.K. Kim, S.H. Lee, S.G. Lee et al., Densification mechanism of BaTiO3 films on Cu substrates fabricated by aerosol deposition. Electron. Mater. Lett. 11, 388–397 (2015). https://doi.org/10.1007/s13391-015-4419-0

    Article  ADS  Google Scholar 

  32. A.G. Khairnar, A.M. Mahajan, Effect of post-deposition annealing temperature on RF-sputtered HfO2 thin film for advanced CMOS technology. Solid State Sci. 15, 24–28 (2013). https://doi.org/10.1016/j.solidstatesciences.2012.09.010

    Article  ADS  Google Scholar 

  33. P. Vitanov, A. Harizanova, T. Ivanova, D. Velkov, Z. Raytcheva, Deposition, structure evolution and dielectric properties of BaTiO3 and BaxSr1xTiO3 thin films prepared by the sol–gel method. Vacuum 69(1–3), 371–377 (2002). https://doi.org/10.1016/S0042-207X(02)00361-5

    Article  ADS  Google Scholar 

  34. K. Piskorski, H. M. Przewlocki, The methods to determine flat-band voltage VFB in semiconductor of a MOS structure. In: The 33rd international convention MIPRO, Opatija, Croatia, IEEE, pp. 37–42 (2010)

  35. M.C. Lee, H.R. Lin, W.L. Lee, N.J. Chung, G.L. Luo, C.H. Chien, Impact of high-temperature annealing on interfacial layers grown by O2 plasma on Si0.5 Ge0.5 substrates. IEEE Trans. Electron Dev. 69(3), 1265–1270 (2022). https://doi.org/10.1109/TED.2021.3138842

    Article  ADS  Google Scholar 

  36. J.D. Hwang, C.Y. Chang, Post-annealing treatment in improving high dielectric constant MgO-based metal-oxide-semiconductor diodes. Appl. Phys. Lett. (2022). https://doi.org/10.1063/5.0094513

    Article  Google Scholar 

  37. J. Gu, W. Tian, Z. Wang, N. Ma, P. Du, Control of oxygen vacancies in TiO6 octahedra of amorphous BaTiO3 thin films with tunable built-in electric field in a-BaTiO3/p-Si heterojunction for metal–oxide–semiconductor applications. Phys. Status Solidi (a) 217(10), 1900941 (2020). https://doi.org/10.1002/pssa.201900941

    Article  ADS  Google Scholar 

  38. E.L. Lin et al., Atomic layer deposition of epitaxial ferroelectric barium titanate on Si (001) for electronic and photonic applications. J. Appl. Phys. 126(6), 064101 (2019). https://doi.org/10.1063/1.5087571

    Article  ADS  Google Scholar 

  39. G.Q. Li, P.T. Lai, S.H. Zeng, M.Q. Huang, B.Y. Liu, Effects of chemical composition on humidity sensitivity of Al/BaTiO3/Si structure. Appl. Phys. Lett. 66(18), 2436–2438 (1995). https://doi.org/10.1063/1.113965

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Kwangwoon University in 2023, and the Technology Innovation Program (RS-2022-00154720, 20003540) granted funded by the MOTIE, Korea.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: J.-S.C., S.-M.K.; Methodology: J.-S.C.; Formal analysis and investigation: J.-S.C., H.-W.L., T.-H.L., S.-R.P., S.-H.C., Y.-H.C., G.-H.L.; Writing—original draft preparation: J.-S.C.; Writing—review and editing: J.-S.C., M.A.S., C.P., W.H.S., J.-M.O. and S.-M.K.; Supervision: S.-M.K. All authors have contributed to the revisions of the manuscript in its final form and agreed to the submission.

Corresponding authors

Correspondence to Jong-Min Oh or Sang-Mo Koo.

Ethics declarations

Conflict of interest

All authors certify that they have no known conflicts of interest that could have appeared to influence the present work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JS., Lee, HW., Lee, TH. et al. Effects of post-deposition annealing on BaTiO3/4H-SiC MOS capacitors using aerosol deposition method. Appl. Phys. A 130, 188 (2024). https://doi.org/10.1007/s00339-024-07285-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07285-1

Keywords

Navigation