Skip to main content
Log in

Modification in the crystallinity, optical and dielectric behavior of PVA polymer with CaTiO3 and graphite nanoflakes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Calcium titanate powder CaTiO3 was subjected to heat treatment and utilized to fabricate hybrid nanocomposite films of polyvinyl alcohol (PVA)/graphite nanoflakes by solution casting technique. The effects of various content of graphite (0, 4, and 8 wt%) on the crystal microstructure, optical parameters, and dielectric behavior of the PVA containing 4wt% of CaTiO3 were investigated. The X-ray diffraction analysis showed a heat treatment of CaTiO3 increased the crystal size and lattice strain. The addition of graphite into the PVA containing heat-treated CaTiO3 weakened the intensity of the main diffraction peaks in PVA films, indicating the drop of crystallinity. The optical absorption spectrum revealed a greater value of optical absorption and index of refraction for the PVA blend containing thermal-treated CaTiO3 than untreated CaTiO3. The incorporation of thermal-treated calcium titanate with graphite dropped the optical energy gap of PVA from 6.4 to 5.2 eV. That was followed by a subsequent increment in the value of Urbach energy in the prepared composite films. Dielectric characterizations showed the addition of heat-treated calcium titanate with graphite improved the low-frequency dielectric constant of the polymer and enhanced the ac conductivity by up to seven orders of magnitude. The increase of ac conductivity was found to be consistent with the rise in the value of loss tangent in the nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Y. Sun, W. Zeng, H. Sun, S. Luo, D. Chen, V. Chan, K. Liao, Inorganic/polymer-graphene hybrid gel as versatile electrochemical platform for electrochemical capacitor and biosensor. Carbon 132, 589–597 (2018)

    CAS  Google Scholar 

  2. D. Zhang, J. Tong, B. Xia, Humidity-sensing properties of chemically reduced graphene oxide/polymer nanocomposite film sensor based on layer-by-layer nano self-assembly. Sens. Actuators, B Chem. 197, 66–72 (2014)

    CAS  Google Scholar 

  3. B. Zaidi, N. Smida, M.G. Althobaiti, A.G. Aldajani, S.D. Almdhaibri, Polymer/carbon nanotube based nanocomposites for photovoltaic application: functionalization, structural, and optical properties. Polymers 14(6), 1093 (2022)

    PubMed  PubMed Central  CAS  Google Scholar 

  4. C. Yoon, K.P. Yang, J. Kim, K. Shin, K. Lee, Fabrication of highly transparent and luminescent quantum dot/polymer nanocomposite for light emitting diode using amphiphilic polymer-modified quantum dots. Chem. Eng. J. 382, 122792 (2020)

    CAS  Google Scholar 

  5. S.A. Maajid, M. Safiulla, Investigation of electrical and thermal property of poly (vinyl alcohol)–calcium titanate nanocomposites. J. Mater. Sci. Mater. Electron. 30, 2292–2298 (2019)

    CAS  Google Scholar 

  6. P.P. Moly, C.B. Jeena, P.J. Elsa, K.J. Ambily, V.T. Joy, High performance polyvinyl alcohol/calcium titanate nanocomposite anion-exchange membranes as separators in redox flow batteries. Polym. Bull. 75, 4409–4428 (2018)

    CAS  Google Scholar 

  7. G.S. Ezat, S.A. Hussen, S.B. Aziz, Structure and optical properties of nanocomposites based on polystyrene (PS) and calcium titanate (CaTiO3) perovskite nanoparticles. Optik 241, 166963 (2021)

    ADS  CAS  Google Scholar 

  8. A. Bibi, A. Shakoor, N.A. Niaz, M. Raffi, M. Salman, Enhanced optical, electronic and dielectric properties of DBSA-doped polyaniline–calcium titanate composites. Bull. Mater. Sci. 46(4), 185 (2023)

    CAS  Google Scholar 

  9. C. Meng, S.L. Yu, H.Q. Wang, Y. Cao, L.M. Tong, W.T. Liu, Y.R. Shen, Graphene-doped polymer nanofibers for low-threshold nonlinear optical waveguiding. Light Sci. Appl. 4(11), e348–e348 (2015)

    CAS  Google Scholar 

  10. L.S. Cavalcante, V.S. Marques, J.C. Sczancoski, M.T. Escote, M.R. Joya, J.A. Varela, E. Longo, Synthesis, structural refinement and optical behavior of CaTiO3 powders: a comparative study of processing in different furnaces. Chem. Eng. J. 143(1–3), 299–307 (2008)

    CAS  Google Scholar 

  11. S.K. AbdulKareem, S.A. Ajeel, Effect of annealing temperatures on the structural and crystalline properties of CaTiO3 powder synthesized via conventional solid-state method. Mater. Today Proc. 42, 2674–2679 (2021)

    CAS  Google Scholar 

  12. B. Himabindu, N.L. Devi, B.R. Kanth, Microstructural parameters from X-ray peak profile analysis by Williamson-Hall models; A review. Mater. Today: Proc. 47, 4891–4896 (2021)

    CAS  Google Scholar 

  13. A. Şelte, B. Özkal, Crystallite size and strain calculations of hard particle reinforced composite powders (Cu/Ni/Fe–WC) synthesized via mechanical alloying. Proc. Est. Acad. Sci. 68(1), 66–78 (2019)

    Google Scholar 

  14. I.P.T. Indrayana, M.T. Tuny, Particles size and lattice strain effect on the optical constants of Fe3O4 nanoparticles. Indones. Phys. Rev. 4(1), 23–42 (2021)

    Google Scholar 

  15. L. Jiang, T. Yang, L. Peng, Y. Dan, Acrylamide modified poly (vinyl alcohol): Crystalline and enhanced water solubility. RSC Adv. 5(105), 86598–86605 (2015)

    ADS  CAS  Google Scholar 

  16. A.N. Popova, Crystallographic analysis of graphite by X-ray diffraction. Coke Chem. 60(9), 361–365 (2017)

    Google Scholar 

  17. H.J. Salavagione, G. Martínez, M.A. Gómez, Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J. Mater. Chem. 19(28), 5027–5032 (2009)

    CAS  Google Scholar 

  18. N.S. Allen, J.F. MacKellar, Photochemistry of dyed and pigmented polymers (Applied Science Publishers, London, 1980)

    Google Scholar 

  19. M. Ghanipour, D. Dorranian, Effect of Ag-nanoparticles doped in polyvinyl alcohol on the structural and optical properties of PVA films. J. Nanomater. 2013, 2–2 (2013)

    Google Scholar 

  20. P.O. Amin, K.A. Ketuly, S.R. Saeed, F.F. Muhammadsharif, M.D. Symes, A. Paul, K. Sulaiman, Synthesis, spectroscopic, electrochemical and photophysical properties of high band gap polymers for potential applications in semi-transparent solar cells. BMC Chem. 15(1), 1–15 (2021)

    CAS  Google Scholar 

  21. B.D. Viezbicke, S. Patel, B.E. Davis, D.P. Birnie III., Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi (b) 252(8), 1700–1710 (2015)

    ADS  CAS  Google Scholar 

  22. E. Atego, J.O. Agumba, G.O. Barasa, The signatures of acid concentration on the optical band gap and associated band tails of chitosan from shrimp for application in optoelectronic devices. Adv. Chem. Eng. Sci. 12(1), 1–12 (2021)

    Google Scholar 

  23. M.M. Hafiz, N. El-Kabany, H.M. Kotb, Y. Bakier, Determination of optical band gap and optical constants of GexSb40− xSe60 thin films. Int. J. Thin Films Sci. Technol. 4, 179–185 (2015)

    Google Scholar 

  24. S.B. Aziz, M.M. Nofal, H.O. Ghareeb, E.M. Dannoun, S.A. Hussen, J.M. Hadi, A.M. Hussein, Characteristics of poly (Vinyl alcohol)(PVA) based composites integrated with green synthesized Al3+-metal complex: Structural, optical, and localized density of state analysis. Polymers 13(8), 1316 (2021)

    PubMed  PubMed Central  CAS  Google Scholar 

  25. P. Jain, P. Arun, Influence of grain size on the band-gap of annealed SnS thin films. Thin Solid Films 548, 241–246 (2013)

    ADS  CAS  Google Scholar 

  26. A.S. Hassanien, K.A. Aly, A.A. Akl, Study of optical properties of thermally evaporated ZnSe thin films annealed at different pulsed laser powers. J. Alloy. Compd. 685, 733–742 (2016)

    CAS  Google Scholar 

  27. H.E. Atyia, N.A. Hegab, Optical spectroscopy and dispersion parameters of Ge15Se60X25 (X= As or Sn) amorphous thin films. Eur. Phys. J.-Appl. Phys. 63(1), 10301 (2013)

    ADS  Google Scholar 

  28. S.B. Aziz, M.M. Nofal, M.A. Brza, S.A. Hussein, K.H. Mahmoud, Z.M. El-Bahy, A.M. Hussein, Characteristics of PEO incorporated with CaTiO3 nanoparticles: structural and optical properties. Polymers 13(20), 3484 (2021)

    PubMed  PubMed Central  CAS  Google Scholar 

  29. T.E. Somesh, M.Q. Al-Gunaid, B.S. Madhukar, Siddaramaiah, Photosensitization of optical band gap modified polyvinyl alcohol films with hybrid AgAlO 2 nanoparticles. J. Mater. Sci. Mater. Electron. 30, 37–49 (2019)

    CAS  Google Scholar 

  30. A.M. Alsaad, Q.M. Al-Bataineh, A.A. Ahmad, Z. Albataineh, A. Telfah, Optical band gap and refractive index dispersion parameters of boron-doped ZnO thin films: a novel derived mathematical model from the experimental transmission spectra. Optik 211, 164641 (2020)

    ADS  CAS  Google Scholar 

  31. S.H. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3(4), 1338 (1971)

    ADS  Google Scholar 

  32. E.G. El-Metwally, D.A. Nasrallah, M. Fadel, The effect of Li4Ti5O12 nanoparticles on structural, linear and third order nonlinear optical properties of PVDF films. Mater. Res. Express 6(8), 085312 (2019)

    ADS  CAS  Google Scholar 

  33. M.B. Mohamed, M.H. Abdel-Kader, Effect of annealed ZnS nanoparticles on the structural and optical properties of PVA polymer nanocomposite. Mater. Chem. Phys. 241, 122285 (2020)

    CAS  Google Scholar 

  34. A.S. Hassanien, I. Sharma, P. Sharma, Optical and dispersion studies of thin S35-xGe15SnxTe50 films: assessment of some physical parameters of samples. Phys. Scr. 98(4), 045911 (2023)

    ADS  Google Scholar 

  35. N. Mahfoudh, K. Karoui, A. BenRhaiem, Optical studies and dielectric response of [DMA] 2 MCl 4 (M= Zn and Co) and [DMA] 2 ZnBr 4. RSC Adv. 11(40), 24526–24535 (2021)

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

  36. T.K. Al-Rawi, The MR affect on optical properties for poly (Vinyl alcohol) films. Baghdad Sci. j 8, 2 (2011)

    Google Scholar 

  37. L. Chen, C. Kim, R. Batra, J.P. Lightstone, C. Wu, Z. Li, R. Ramprasad, Frequency-dependent dielectric constant prediction of polymers using machine learning. npj Comput. Mater. 6(1), 61 (2020)

    ADS  CAS  Google Scholar 

  38. G. Torğut, F. Biryan, K. Demirelli, Effect of graphite particle fillers on dielectric and conductivity properties of poly (NIPAM-co-HEMA). Bull. Mater. Sci. 42, 1–11 (2019)

    Google Scholar 

  39. A.G. D’aloia, F. Marra, A. Tamburrano, G. De Bellis, M.S. Sarto, Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon 73, 175–184 (2014)

    Google Scholar 

  40. A.A. Al-Muntaser, R.A. Pashameah, K. Sharma, E. Alzahrani, A.E. Tarabiah, Reinforcement of structural, optical, electrical, and dielectric characteristics of CMC/PVA based on GNP/ZnO hybrid nanofiller: nanocomposites materials for energy-storage applications. Int. J. Energy Res. 46(15), 23984–23995 (2022)

    CAS  Google Scholar 

  41. I. Tantis, G.C. Psarras, D. Tasis, Functionalized graphene–poly (vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polym Lett 6(4), 283–292 (2012)

    CAS  Google Scholar 

  42. X. Chen, F. Liang, W. Lu, Y. Zhao, G. Fan, X. Wang, Improved dielectric properties of Ag@ TiO2/PVDF nanocomposites induced by interfacial polarization and modifiers with different carbon chain lengths. Appl. Phys. Lett., 112(16). (2018)

  43. G.M. Janeesh, V. Meera, A.M. Shalom, D. Rajan Babu, N.A. Nambi Raj, M.S. Sreekanth, T.P. Sumangala, Enhanced electrical conductivity and structural, mechanical characterization of standalone poly (vinyl alcohol)-graphite nanoplatelets composite films. J. Appl. Polym. Sci. 138(10), 49976 (2021)

    CAS  Google Scholar 

  44. K. Silakaew, P. Thongbai, Significantly improved dielectric properties of multiwall carbon nanotube-BaTiO 3/PVDF polymer composites by tuning the particle size of the ceramic filler. RSC Adv. 9(41), 23498–23507 (2019)

    PubMed  PubMed Central  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I gratefully acknowledge the support from the University of Sulaimani, College of Science-Department of Physics, for this research.

Author information

Authors and Affiliations

Authors

Contributions

The author confirms sole responsibility for the following: study conception and design, data collection, analysis and interpretation of results, and manuscript preparation.

Corresponding author

Correspondence to Gulstan Serwan Ezat.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezat, G.S. Modification in the crystallinity, optical and dielectric behavior of PVA polymer with CaTiO3 and graphite nanoflakes. Appl. Phys. A 130, 115 (2024). https://doi.org/10.1007/s00339-024-07276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-024-07276-2

Keywords

Navigation