Skip to main content
Log in

Crossed arm-based quad T-shaped metallic arm with a circular loop resonator with wider bandwidth for high-frequency-based wireless communication

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A new quad T-shaped triple band metamaterial is presented in this paper containing three resonance frequencies at 5.7 GHz, 9.6 GHz and 12.1 GHz which are covered C, X, and Ku-band, respectively. These three resonance frequencies are observed by high-frequency electromagnetic solver CST (Computer simulation technology) microwave studio at a frequency range of 4–16 GHz with the electric, magnetic and surface current distributions, and the effective parameters are carried out using the robust method from the transmission and reflection coefficient. The junction of four T-shaped conducting layers is introduced wider bandwidth of transmission coefficient from 4.7 to 6.2 GHz, 8.4 to 10.4 GHz, and 11.3 to 13.5 GHz and the symmetric orientation of the split rings exhibits stable responses of EM properties. The proposed metamaterial unit cell has shown a strong accumulation of electric and magnetic field components, where the negative permittivity, negative permeability and negative refractive index are shown at the resonance frequencies of the transmission coefficient. The different angular orientations of the proposed metamaterial with different dielectric constants are analyzed for parametric study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All the data are available within the manuscript.

References

  1. D.R. Smith, J.P. Willie, D.C. Vier, C.N.-N. Syrus, S. Seldon, Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84(18), 4184 (2000)

    Article  ADS  PubMed  CAS  Google Scholar 

  2. J.B. Pendry, J.H. Anthony, J.R. David, W.J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theory Tech 47(11), 2075–2084 (1999)

    Article  ADS  Google Scholar 

  3. A. Pandya, T.K. Upadhyaya, K. Pandya, Design of metamaterial based multilayer antenna for navigation/wifi/satellite applications. Progr Electromagn Res M 99, 103–113 (2021)

    Article  Google Scholar 

  4. G. Saleh, S.A. Ijlal, A.-N. Ibraheem, Glucose level sensing using single asymmetric split ring resonator. Sensors 21(9), 2945 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. H. Islam, S. Das, T. Ali, P. Kumar, S. Dhar, T. Bose, Split ring resonator-based bandstop filter for improving isolation in compact MIMO antenna. Sensors 21(7), 2256 (2021)

    Article  ADS  PubMed Central  Google Scholar 

  6. R.K. Pokharel, A. Barakat, S. Alshhawy, K. Yoshitomi, C. Sarris, Wireless power transfer system rigid to tissue characteristics using metamaterial inspired geometry for biomedical implant applications. Sci. Rep. 11(1), 1–10 (2021)

    Article  Google Scholar 

  7. S. Kumar, A.S. Dixit, Wideband antipodal Vivaldi antenna using metamaterial for micrometer and millimeter wave applications. J Infrared Millim Terahertz Waves 42(9), 974–985 (2021)

    Article  Google Scholar 

  8. T. Ramachandran, M.R. Faruque, A.M. Siddiky, M.T. Islam, Reduction of 5G cellular network radiation in wireless mobile phone using an asymmetric square shaped passive metamaterial design. Sci. Rep. 11(1), 2619 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  9. Das R, Eve M, Mengyao Y, Hadi H (2021) Serpentine-shaped metamaterial energy harvester for wearable and implantable medical systems. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, pp 1–5

  10. E. Zhou, Fu. Yongzhi Cheng, H.L. Chen, X. Li, Low-profile high-gain wideband multi-resonance microstrip-fed slot antenna with anisotropic metasurface. Progr Electromagn Res 175, 91–104 (2022)

    Article  Google Scholar 

  11. Y. Liu, H. Yang, X. Huang, Yu. Zetai, S. Li, Y. Yang, A metamaterial polarization converter with half reflection and half transmission simultaneously. Phys. Lett. A 389, 127101 (2021)

    Article  CAS  Google Scholar 

  12. T. Ramachandran, R.I.F. Mohammad, T.I. Mohammad, U.K. Mayeen, Radar cross-section reduction using polarisation-dependent passive metamaterial for satellite communication. Chin. J. Phys. (2021). https://doi.org/10.1016/j.cjph.2021.12.023

    Article  Google Scholar 

  13. W. Fang, F.-K. Zhou, Y.-J. Wang, P. Chen, Broadband, wide-angle, polarization-independent and lightweight low-scattering coding metamaterial based on stereo meta-atoms. Results Phys 20, 103687 (2021)

    Article  Google Scholar 

  14. A.M. Siddiky, M.R. Faruque, M.T. Islam, S. Abdullah, M.U. Khandaker, Inverse double-C shaped square split ring resonator based metamaterial with multi-resonant frequencies for satellite band applications. Results Phys 1(19), 1454 (2020)

    Google Scholar 

  15. H. Xie, Hu. Tielun, Z. Wang, Y. Yang, Hu. Xiaohui, W. Qi, H. Liu, A physics-based HIE-FDTD method for electromagnetic modeling of multi-band frequency selective surface. Progr Electromagn Res 173, 129–140 (2022)

    Article  Google Scholar 

  16. N. Wu, Y. Zhang, H. Ma, H. Chen, H. Qian, Tunable high-Q plasmonic metasurface with multiple surface lattice resonances. Prog Electromagn Res 172, 23–32 (2021)

    Article  Google Scholar 

  17. S.K. Sahoo, S. Kuchipudi, C. Sri Chaitanya, R. Narasimha Rao, M.K. Buragohain, Effect of shape on depth profile nuclear magnetic resonance data of multilayered composite structure. Nondestruct Test Eval 38(3), 539–552 (2023)

    Article  ADS  CAS  Google Scholar 

  18. A.M. Marindra, G.Y. Tian, Multiresonance chipless RFID sensor tag for metal defect characterization using principal component analysis. IEEE Sens. J. 19(18), 8037–8046 (2019)

    Article  ADS  Google Scholar 

  19. A.M. Siddiky, M.R. Faruque, M.T. Islam, S. Abdullah, A multi-split based square split ring resonator for multiband satellite applications with high effective medium ratio. Results Phys 22, 103865 (2021)

    Article  Google Scholar 

  20. T.A. Elwi, Metamaterial based a printed monopole antenna for sensing applications. Int J RF Microwave Comput-Aided Eng 28(7), e21470 (2018)

    Article  Google Scholar 

  21. A. Iqbal, A.S. Omar, B. Amal, B. Abdul, Metamaterial-based highly isolated MIMO antenna for portable wireless applications. Electronics 7(10), 267 (2018)

    Article  Google Scholar 

  22. Y.I. Abdulkarim, L. Deng, H. Luo, S. Huang, M. Karaaslan, O. Altıntaş, M. Bakır, F.F. Muhammadsharif, H.N. Awl, C. Sabah, K.S. Al-badri, Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J Mater Res Technol 9(5), 10291–10304 (2020)

    Article  CAS  Google Scholar 

  23. D.A. Sehrai, F. Muhammad, S.H. Kiani, Z.H. Abbas, M. Tufail, S. Kim, Gain-enhanced metamaterial based antenna for 5G communication standards. Comput Mater Contin 64(3), 1587 (2020)

    Google Scholar 

  24. R. Mark, N. Rajak, K. Mandal, S. Das, Metamaterial based superstrate towards the isolation and gain enhancement of MIMO antenna for WLAN application. AEU-Int J Electron Commun 100, 144–152 (2019)

    Article  Google Scholar 

  25. K. Pedram, J. Nourinia, C. Ghobadi, N. Pouyanfar, M. Karamirad, Compact and miniaturized metamaterial-based microstrip fractal antenna with reconfigurable qualification. AEU-Int J Electron Commun 1(114), 152959 (2020)

    Article  Google Scholar 

  26. U. Ali, S. Ullah, M. Shafi, S.A. Shah, I.A. Shah, J.A. Flint, Design and comparative analysis of conventional and metamaterial-based textile antennas for wearable applications. Int J Numer Model 32(6), e2567 (2019)

    Article  Google Scholar 

  27. A.M. Siddiky, M.R. Faruque, M.T. Islam, S. Abdullah, M.U. Khandaker, Parabolic split ring resonator (PSRR) based MNZ metamaterial with angular rotation for WiFi/WiMax/Wireless/ISM band applications. Chin. J. Phys. 1(71), 753–769 (2021)

    Article  MathSciNet  Google Scholar 

  28. A.H. Jabire, A. Ghaffar, X.J. Li, A. Abdu, S. Saminu, M. Alibakhshikenari, F. Falcone, E. Limiti, Metamaterial based design of compact UWB/MIMO monopoles antenna with characteristic mode analysis. Appl. Sci. 11(4), 1542 (2021)

    Article  CAS  Google Scholar 

  29. S. Khan, T.F. Eibert, A multifunctional metamaterial-based dual-band isotropic frequency-selective surface. IEEE Trans. Antennas Propag. 66(8), 4042–4051 (2018)

    Article  ADS  Google Scholar 

  30. X. Chen, T.M. Grzegorczyk, B.I. Wu, J. Pacheco Jr., J.A. Kong, Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70(1), 0108 (2004)

    Article  Google Scholar 

  31. A.F. Almutairi, M.S. Islam, M. Samsuzzaman, M.T. Islam, N. Misran, M.T. Islam, A complementary split ring resonator based metamaterial with effective medium ratio for C-band microwave applications. Results Phys 1(15), 102675 (2019)

    Article  Google Scholar 

  32. E. Ahamed, M.R. Faruque, M.F. Mansor, M.T. Islam, Polarization-dependent tunneled metamaterial structure with enhanced fields properties for X-band application. Results Phys 1(15), 102530 (2019)

    Article  Google Scholar 

  33. A.M. Tamim, M.R. Faruque, M.J. Alam, S.S. Islam, M.T. Islam, Split ring resonator loaded horizontally inverse double L-shaped metamaterial for C-, X-and Ku-Band Microwave applications. Results Phys 1(12), 2112–2122 (2019)

    Article  ADS  Google Scholar 

  34. T. Ramachandran, M.R.I. Faruque, E. Ahamed, Composite circular split ring resonator (CSRR)-based left-handed metamaterial for C-and Ku-band application. Results Phys 14, 102435 (2019)

    Article  Google Scholar 

  35. M.R. Faruque, A.M. Siddiky, E. Ahamed, M.T. Islam, S. Abdullah, Parallel LC shaped metamaterial resonator for C and X band satellite applications with wider bandwidth. Sci. Rep. 11(1), 16247 (2021)

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Universiti Grant, Universiti Kebangsaan Malaysia, Geran Translasi, UKM-TR2022-05 for conducting the research work.

Author information

Authors and Affiliations

Authors

Contributions

AMS and RS made substantial contributions to design, analysis and characterization. MRIF participated in the conception, application and critical revision of the article for important intellectual content. MA, MTI and SA provided necessary instructions for analytical and experimental purposes.

Corresponding author

Correspondence to Mohammad Rashed Iqbal Faruque.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faruque, M.R.I., Siddiky, A.M., Sifat, R. et al. Crossed arm-based quad T-shaped metallic arm with a circular loop resonator with wider bandwidth for high-frequency-based wireless communication. Appl. Phys. A 130, 77 (2024). https://doi.org/10.1007/s00339-023-07237-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07237-1

Keywords

Navigation