Skip to main content
Log in

The influence of composite pulse current and static magnetic fields on the solidification structure formation in Pb–Zn alloys

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Pb–Zn alloy is an ideal anode material for zinc electrodeposition. In this work, the microstructure of Pb–Zn alloy is controlled by composite electro-magnetic fields (CEMFs), and the mechanism is investigated. The results show that electric current pulses (ECPs) can significantly enhance the nucleation driving force for the second phase, thereby promoting the refinement of the second phase. Static magnetic field (SMF) can substantially suppress melt convection and increase the melt cooling rate around the center axis of the sample. Therefore, it is favorable for the formation of a homogeneous dispersed microstructure along the radial direction. CEMFs not only can inhibit melt convection, but also enhance the nucleation rates of Minority Phase Droplets (MPDs). This promotes the formation of a solidification microstructure in which the fine Minority Phase Particles (MPPs) are homogeneously distributed in the matrix. This work indicates that the application of CEMFs is an effective method for controlling the microstructure of monotectic alloys and it has an important industrial value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available upon request from the corresponding authors.

References

  1. T.B. Singh, K. Lal, R.K. Mohanty, C.S. Shivaramakrisnan, Amsterdam: Elsevier Science Bv 1, (1998)

  2. G.J. May, A. Davidson, B. Monahov, J. Energy Storage 15, 145–157 (2018)

    Google Scholar 

  3. S.V. Trukhanov, A.V. Trukhanov, V.A. Turchenko, A.V. Trukhanov, E.L. Trukhanova, D.I. Tishkevich, V.M. Ivanov, T.I. Zubar, M. Salem, V.G. Kostishyn, L.V. Panina, D.A. Vinnik, S.A. Gudkova, Ceram. Int. 44, 1 (2018)

    Google Scholar 

  4. T.I. Zubar, V.M. Fedosyuk, S.V. Trukhanov, D.I. Tishkevich, D. Michels, D. Lyakhov, A.V. Trukhanov, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  5. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci.-Mater. El. 32, 12 (2021)

    Google Scholar 

  6. A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci-Mater. El. 30, 12 (2019)

    Google Scholar 

  7. M.T. Wall, Y. Ren, T. Hesterberg, T. Ellis, M.L. Young, J Energy Storage 55, 105569 (2022)

    Google Scholar 

  8. S.L. Wang, C.C. Li, J. Mater. Sci. Eng. 30, 2 (2012)

    Google Scholar 

  9. S.C. Liu, S.S. Xu, J.C. Jie, J.J. Zhang, Y. Dong, X.Z. Li, T.J. Li, J. Alloys Compd. Alloys Compd. 888, 161627 (2021)

    Google Scholar 

  10. L. Bo, S.S. Li, L. Wang, D. Wu, M. Zuo, D.G. Zhao, Results Phys. 8, 1086–1091 (2018)

    ADS  Google Scholar 

  11. Q. Sun, H.X. Jiang, J.Z. Zhao, J. He, Acta Mater. Mater. 129, 321–330 (2017)

    ADS  Google Scholar 

  12. Y.H. Wu, W.L. Wang, J. Chang, B. Wei, J. Alloys Compd. Alloys Compd. 763, 808–814 (2018)

    Google Scholar 

  13. W.L. Wang, Y.H. Wu, L.H. Li, W. Zhai, X.M. Zhang, B. Wei, Sci. Rep. Rep. 5, 16335 (2015)

    ADS  Google Scholar 

  14. W.L. Wang, Y.H. Wu, L.H. Li, D.L. Geng, B. Wei, Phys. Rev. E 93, 3 (2016)

    Google Scholar 

  15. S.C. Liu, J.C. Jie, B.W. Dong, Z.K. Guo, T.M. Wang, T.J. Li, Mater. Des.. Des. 156, 71–81 (2018)

    Google Scholar 

  16. J.Z. Zhao, H. Sun, L.L. Zhang, H.X. Jiang, L.J. Yang, J. He, Natl. Sci. Rev. 10, 2 (2023)

    Google Scholar 

  17. H.X. Jiang, J.Z. Zhao, Acta Metall. Sin-Engl. 31, 12 (2018)

    Google Scholar 

  18. H. Friedman, S. Reich, R. Popovitz-Biro, P. von Huth, I. Halevy, Y. Koltypin, A. Gedanken, Z. Porat, Ultrason. Sonochem.. Sonochem. 20, 1 (2013)

    Google Scholar 

  19. J. Zhu, T.M. Wang, F. Cao, H.W. Fu, Y.N. Fu, H.L. Xie, T.Q. Xiao, J. Mater. Eng. Perform. 22, 5 (2013)

    Google Scholar 

  20. Y.B. Zhong, T.X. Zheng, L.C. Dong, B.F. Zhou, W.L. Ren, J. Wang, Z.M. Ren, F. Debray, E. Beaugnon, H. Wang, Q.L. Wang, Y.M. Dai, Mater. Des.. Des. 100, 168–174 (2016)

    Google Scholar 

  21. Y.B. Zhong, J. Wang, T.X. Zheng, Y. Fautrelle, Z.M. Ren, Mater. Today: Proc. 2, S364–S372 (2015)

    Google Scholar 

  22. H.L. Li, J.Z. Zhao, Comput. Mater. Sci.. Mater. Sci. 46, 4 (2009)

    Google Scholar 

  23. Z.Q. Kang, E.G. Wang, L. Zhang, J.C. He, Chin. J. Mater. Res. 25, 2 (2011)

    Google Scholar 

  24. J. Wang, Y.B. Zhong, Y. Fautrelle, T.X. Zheng, F. Li, Z.M. Ren, F. Debray, Appl. Phys. A 112, 4 (2013)

    Google Scholar 

  25. B.F. Zhou, W.H. Lin, Y. Liu, T.X. Zheng, Y.B. Zhong, H. Wang, Q.L. Wang, J. Alloys Compd. 889, 161670 (2021)

    Google Scholar 

  26. H.X. Jiang, J.Z. Zhao, J. He, J. Mater. Sci. Technol. 30, 10 (2014)

    Google Scholar 

  27. H.X. Jiang, J. He, J.Z. Zhao, Sci. Rep. 5, 13825 (2015)

    ADS  Google Scholar 

  28. T. Ma, X.S. Sun, Y.N. Ning, W.X. Hao, High Temp. Mater. Process. 40, 382–388 (2021)

    ADS  Google Scholar 

  29. L. Ratke, D. Uffelmann, Coarsening processes in liquid dispersions. In: International Conf on Solidification and Microgravity, Trans Tech Publications Ltd, Miskolc, Hungary, pp. 69–84 (1991)

  30. J. Wang, Y.B. Zhong, C. Wang, Z.Q. Wang, Z.M. Ren, K.D. Xu, Acta Phys. Sin. 60, 7 (2011)

    Google Scholar 

  31. N. David, J. Hertz, J.M. Fiorani, Zeitschrift fur Metallkunde 94, 1 (2003)

    Google Scholar 

  32. W.L. Ren, L. Lu, G.Z. Yuan, W.D. Xuan, Y.B. Zhong, J.B. Yu, Z.M. Ren, Mater. Lett.. Lett. 100, 223–226 (2013)

    Google Scholar 

  33. J.R. Rogers, R.H. Davis, Metall. Mater. Trans. A 21, 59–68 (1990)

    ADS  Google Scholar 

  34. W. Chester, J. Fluid Mech. 3, 3 (1957)

    Google Scholar 

  35. M.H. Wu, A. Ludwig, L. Ratke, Metall. Mater. Trans. A Mater. Trans. A 34, 755 (2003)

    Google Scholar 

  36. J.Z. Zhao, H.L. Li, X.F. Zhang, J. He, L. Ratke, Int. J. Mater. Res. 100, 1 (2009)

    Google Scholar 

  37. H.L. Li, J.Z. Zhao, Appl. Phys. Lett. Phys. Lett. 92, 241902 (2008)

    ADS  Google Scholar 

  38. A.T. Dinsdale, Calphad 15, 4 (1991)

    Google Scholar 

  39. A.I. Pommrich, A. Meyer, D. Holland-Moritz, T. Unruh, Appl. Phys. Lett. 92, 24 (2008)

    Google Scholar 

  40. D.C. Ghosh, R. Biswas, Int. J. Mol. Sci. 3, 2 (2002)

    Google Scholar 

  41. T. Iida, R.I.L. Guthrie, The thermophysical properties of metallic liquids: fundamentals (Oxford University Press, Oxford, 2015)

    Google Scholar 

  42. J. Smithells, Metal reference book (Butterworths, London & Boston, 1976)

    Google Scholar 

  43. Y.Q. Li, J.Z. Zhao, H.X. Jiang, J. He, Acta Metall. Sin. Sin 58, 8 (2022)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China [Grant Number 2021YFA0716303], the National Natural Science Foundation of China (Grant Numbers 51971227, 51974288, 52174380), China's Manned Space Station Project, and the Space Utilization System of China Manned Space Engineering (Grant Number KJZ-YY-NCL06).

Author information

Authors and Affiliations

Authors

Contributions

HJ, JZ, and JH conceived the idea and designed the experiments. BH, YL, HJ and LZ conducted the experiments. BH performed the numerical simulations. BH and YL prepared the samples and conducted materials characterization. BH, YL and HJ drafted the manuscript. HJ, JZ and JH interpreted, discussed and edited the manuscript.

Corresponding authors

Correspondence to Hongxiang Jiang or Jiuzhou Zhao.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

Ethical approval

This research does not include experiments involving human tissue and does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, B., Li, Y., Jiang, H. et al. The influence of composite pulse current and static magnetic fields on the solidification structure formation in Pb–Zn alloys. Appl. Phys. A 130, 15 (2024). https://doi.org/10.1007/s00339-023-07165-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07165-0

Keywords

Navigation