Skip to main content
Log in

Enhanced photocatalytic and antimicrobial properties of undoped and aluminum-doped zinc oxide nanosheets synthesized via novel laser-assisted chemical bath technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The urgency of antibiotic resistance has been recognized, necessitating prompt, and focused efforts from the scientific community. Innovative alternatives, such as nanoparticles and photocatalytic agents, have been investigated to confront drug-resistant microbes. As an antimicrobial and photocatalytic agent, zinc oxide (ZnO) has demonstrated considerable promise. This study utilized a cutting-edge method called laser-assisted chemical bath synthesis (LACBS) to create undoped and Al-doped ZnO nanostructures without a catalyst. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV–Vis spectrophotometry, and Fourier-transform infrared spectra (FTIR) were used to verify the structural and optical properties of the prepared nanostructures. The influence of doping concentration was evaluated by producing samples with doping concentrations of 1%, 2%, and 3%, and they were assessed employing diverse analytical techniques. It was found that ZnO exhibited the most pronounced antimicrobial activity: Al(3%) nanosheets, which can be attributed to their extensive surface area and the photocatalytic activity induced by LACBS. These materials displayed exceptional performance in the degradation of methylene orange. The integration of aluminum was observed to expedite interfacial charge transfer processes and diminish recombination, thereby enhancing the photocatalytic activity of the ZnO nanosheets. These findings emphasize the potential of aluminum-doped zinc oxide nanosheets as wide-ranging microbicides and disinfectants, underlining their significance in addressing drug-resistant microbes. Adopting such sophisticated materials could pave the way for creating potent antibacterial agents capable of tackling the escalating issue of antibiotic resistance. Subsequent research ought to concentrate on assessing the impact of augmented doping levels on the investigated variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

All data are contained within the article.

References

  1. T. Pulingam, T. Parumasivam, A.M. Gazzali, A.M. Sulaiman, J.Y. Chee, M. Lakshmanan et al., Antimicrobial resistance: prevalence, economic burden, mechanisms of resistance and strategies to overcome. Eur. J. Pharm. Sci. 170, 106103 (2022). https://doi.org/10.1016/j.ejps.2021.106103

    Article  Google Scholar 

  2. G. Mancuso, A. Midiri, E. Gerace, C. Biondo, Bacterial antibiotic resistance: the most critical pathogens. Pathogens (2021). https://doi.org/10.3390/pathogens10101310

    Article  Google Scholar 

  3. World Health Organization. Antimicrobial Resistance n.d. https://cdn.who.int/media/docs/default-source/antimicrobial-resistance/amr-factsheet.pdf?sfvrsn=7c29d6d1_0. Accessed 1 Apr 2023

  4. K. Hansson, A. Brenthel, Imagining a post-antibiotic era: a cultural analysis of crisis and antibiotic resistance. Med. Humanit. 48, 381–388 (2022). https://doi.org/10.1136/MEDHUM-2022-012409

    Article  Google Scholar 

  5. K.N. Di, D.T. Pham, T.S. Tee, Q.A. Binh, T.C. Nguyen, Antibiotic usage and resistance in animal production in Vietnam: a review of existing literature. Trop. Anim. Health Prod. 53, 340 (2021). https://doi.org/10.1007/s11250-021-02780-6

    Article  Google Scholar 

  6. S. Hernando-Amado, T.M. Coque, F. Baquero, J.L. Martínez, Defining and combating antibiotic resistance from One Health and Global Health perspectives. Nat. Microbiol. 4, 1432–1442 (2019). https://doi.org/10.1038/s41564-019-0503-9

    Article  Google Scholar 

  7. Y. Hu, J. Anes, S. Devineau, S. Fanning, Klebsiella pneumoniae: prevalence, reservoirs, antimicrobial resistance, pathogenicity, and infection: a hitherto unrecognized zoonotic bacterium. Foodborne Pathog. Dis.Pathog. Dis. 18, 63–84 (2021). https://doi.org/10.1089/fpd.2020.2847

    Article  Google Scholar 

  8. C. Tyrrell, C.M. Burgess, F.P. Brennan, F. Walsh, Antibiotic resistance in grass and soil. Biochem. Soc. Trans.. Soc. Trans. (2019). https://doi.org/10.1042/BST20180552

    Article  Google Scholar 

  9. M.A. Abushaheen, M. Muzaheed, A.J. Fatani, M. Alosaimi, W. Mansy, M. George et al., Antimicrobial resistance, mechanisms and its clinical significance. Dis. Mon. 66, 100971 (2020). https://doi.org/10.1016/j.disamonth.2020.100971

    Article  Google Scholar 

  10. G. Subramaniam, M. Girish, Antibiotic resistance—a cause for reemergence of infections. Indian J. Pediatr. 87, 937–944 (2020). https://doi.org/10.1007/s12098-019-03180-3

    Article  Google Scholar 

  11. R. Wise, The development of new antimicrobial agents. BMJ 317, 643–644 (1998). https://doi.org/10.1136/bmj.317.7159.643

    Article  Google Scholar 

  12. J.T. Seil, T.J. Webster, Antimicrobial applications of nanotechnology: methods and literature. Int. J. Nanomed.Nanomed. 7, 2767 (2012). https://doi.org/10.2147/IJN.S24805

    Article  Google Scholar 

  13. B.L. da Silva, M.P. Abuçafy, E.B. Manaia, J.A.O. Junior, B.G. Chiari-Andréo, R.C.L.R. Pietro et al., Relationship between structure and antimicrobial activity of zinc oxide nanoparticles: an overview. Int. J. Nanomed.Nanomed. 14, 9395 (2019). https://doi.org/10.2147/IJN.S216204

    Article  Google Scholar 

  14. U. Anand, N. Jacobo-Herrera, A. Altemimi, N. Lakhssassi, A comprehensive review on medicinal plants as antimicrobial therapeutics: potential avenues of biocompatible drug discovery. Metabolites (2019). https://doi.org/10.3390/METABO9110258

    Article  Google Scholar 

  15. E.A.S. Dimapilis, C.S. Hsu, R.M.O. Mendoza, M.C. Lu, Zinc oxide nanoparticles for water disinfection. Sustain. Environ. Res. 28, 47–56 (2018). https://doi.org/10.1016/J.SERJ.2017.10.001

    Article  Google Scholar 

  16. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori et al., Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nanomicro Lett 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  Google Scholar 

  17. M.T. Noman, N. Amor, M. Petru, A. Mahmood, P. Kejzlar, Photocatalytic behaviour of zinc oxide nanostructures on surface activation of polymeric fibres. Polymers (Basel) (2021). https://doi.org/10.3390/POLYM13081227

    Article  Google Scholar 

  18. C.R. Mendes, G. Dilarri, C.F. Forsan, V.M.R. Sapata, P.R.M. Lopes, P.B. de Moraes et al., Antibacterial action and target mechanisms of zinc oxide nanoparticles against bacterial pathogens. Sci. Rep. 12, 1–10 (2022). https://doi.org/10.1038/s41598-022-06657-y

    Article  Google Scholar 

  19. F. Mirhosseini, M. Amiri, A. Daneshkazemi, H. Zandi, Z.S. Javadi, Antimicrobial effect of different sizes of nano zinc oxide on oral microorganisms. Front Dent. 16, 105 (2019). https://doi.org/10.18502/FID.V16I2.1361

    Article  Google Scholar 

  20. B. Al Farsi, T.M. Souier, F. Al Marzouqi, M. Al Maashani, M. Bououdina, H.M. Widatallah et al., Structural and optical properties of visible active photocatalytic Al doped ZnO nanostructured thin films prepared by dip coating. Opt. Mater. (Amst) 113, 110868 (2021). https://doi.org/10.1016/J.OPTMAT.2021.110868

    Article  Google Scholar 

  21. U.P.S. Gahlaut, V. Kumar, Y.C. Goswami, Enhanced photocatalytic activity of low cost synthesized Al doped amorphous ZnO/ZnS heterostructures. Phys. E Low Dimens. Syst. Nanostruct. 117, 113792 (2020). https://doi.org/10.1016/J.PHYSE.2019.113792

    Article  Google Scholar 

  22. S.H. Zyoud, V. Ganesh, C.A.C. Abdullah, I.S. Yahia, A.H. Zyoud, A.F.I. Abdelkader et al., Facile synthesis of Ni-doped ZnO nanostructures via laser-assisted chemical bath synthesis with high and durable photocatalytic activity. Crystals 13, 1087 (2023). https://doi.org/10.3390/CRYST13071087

    Article  Google Scholar 

  23. C.J. Murray, K.S. Ikuta, F. Sharara, L. Swetschinski, G.R. Aguilar, A. Gray et al., Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet 399, 629–655 (2022). https://doi.org/10.1016/S0140-6736(21)02724-0

    Article  Google Scholar 

  24. M. Colomb-Cotinat, J. Lacoste, C. Brun-Buisson, V. Jarlier, B. Coignard, S. Vaux, Estimating the morbidity and mortality associated with infections due to multidrug-resistant bacteria (MDRB), France, 2012. Antimicrob. Resist. Infect. Control 5, 56 (2016). https://doi.org/10.1186/s13756-016-0154-z

    Article  Google Scholar 

  25. K.M. Joshi, A. Shelar, U. Kasabe, L.K. Nikam, R.A. Pawar, J. Sangshetti et al., Biofilm inhibition in Candida albicans with biogenic hierarchical zinc-oxide nanoparticles. Biomater. Adv. 134, 112592 (2022). https://doi.org/10.1016/j.msec.2021.112592

    Article  Google Scholar 

  26. H. Ghaffari, A. Tavakoli, A. Moradi, A. Tabarraei, F. Bokharaei-Salim, M. Zahmatkeshan et al., Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J. Biomed. Sci. 26, 1–10 (2019). https://doi.org/10.1186/S12929-019-0563-4/FIGURES/7

    Article  Google Scholar 

  27. V. Tiwari, N. Mishra, K. Gadani, P.S. Solanki, N.A. Shah, M. Tiwari, Mechanism of anti-bacterial activity of zinc oxide nanoparticle against carbapenem-resistant Acinetobacter baumannii. Front. Microbiol. 9, 1218 (2018). https://doi.org/10.3389/FMICB.2018.01218/BIBTEX

    Article  Google Scholar 

  28. H. Mohd Yusof, R. Mohamad, U.H. Zaidan, N.A. Abdul Rahman, Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J. Anim. Sci. Biotechnol. 10, 1–22 (2019). https://doi.org/10.1186/S40104-019-0368-Z

    Article  Google Scholar 

  29. A. Elbourne, V.K. Truong, S. Cheeseman, P. Rajapaksha, S. Gangadoo, J. Chapman et al., The use of nanomaterials for the mitigation of pathogenic biofilm formation. Methods Microbiol. 46, 61–92 (2019). https://doi.org/10.1016/BS.MIM.2019.04.002

    Article  Google Scholar 

  30. S.H. Zyoud, B.M. Al Radi, B.M. Al Maamari, M. Nasor, H.Y. Zahran, I.S. Yahia et al., Efficient Al-doped ZnO nanostructured synthesis by laser-assisted chemical bath: structural, optical, and photocatalytic activity using blue laser irradiation. Indian J. Phys. 2023, 1–12 (2023). https://doi.org/10.1007/S12648-023-02828-3

    Article  Google Scholar 

  31. S.H.A. Koop, C.J. van Leeuwen, The challenges of water, waste and climate change in cities. Environ. Dev. Sustain. 19, 385–418 (2017). https://doi.org/10.1007/S10668-016-9760-4/TABLES/4

    Article  Google Scholar 

  32. K. Lutchmiah, A.R.D. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment: a review. Water Res. 58, 179–197 (2014). https://doi.org/10.1016/J.WATRES.2014.03.045

    Article  Google Scholar 

  33. J.A. Garrido-Cardenas, B. Esteban-García, A. Agüera, J.A. Sánchez-Pérez, F. Manzano-Agugliaro, Wastewater treatment by advanced oxidation process and their worldwide research trends. Int. J. Environ. Res. Public Health 17, 170 (2019). https://doi.org/10.3390/IJERPH17010170

    Article  Google Scholar 

  34. S. Dave, J. Das, M.P. Shah, Photocatalytic degradation of dyes: current trends and future perspectives (Elsevier, Amsterdam, 2021), p.796

    Google Scholar 

  35. P. Zhang, R.Y. Hong, Q. Chen, W.G. Feng, On the electrical conductivity and photocatalytic activity of aluminum-doped zinc oxide. Powder Technol. 253, 360–367 (2014). https://doi.org/10.1016/J.POWTEC.2013.12.001

    Article  Google Scholar 

  36. A. Piras, C. Olla, G. Reekmans, A.S. Kelchtermans, D. De Sloovere, K. Elen et al., Photocatalytic performance of undoped and Al-doped ZnO nanoparticles in the degradation of rhodamine B under UV-visible light: the role of defects and morphology. Int. J. Mol. Sci. 23, 15459 (2022). https://doi.org/10.3390/IJMS232415459/S1

    Article  Google Scholar 

  37. A.R. Bhapkar, M. Geetha, D. Jaspal, K. Gheisari, M. Laad, J.J. Cabibihan et al., Aluminium doped ZnO nanostructures for efficient photodegradation of indigo carmine and azo carmine G in solar irradiation. Appl. Nanosci.Nanosci. 13, 5777–5793 (2023). https://doi.org/10.1007/S13204-023-02824-3

    Article  ADS  Google Scholar 

  38. X. Sun, W. Luo, L. Chen, L. Zheng, C. Bao, P. Sun et al., Synthesis of porous Al doped ZnO nanosheets with high adsorption and photodecolorizative activity and the key role of Al doping for methyl orange removal. RSC Adv. 6, 2241–2251 (2015). https://doi.org/10.1039/C5RA21954J

    Article  ADS  Google Scholar 

  39. E. Ghafari, S.A. Ghahari, Y. Feng, F. Severgnini, N. Lu, Effect of zinc oxide and Al-Zinc oxide nanoparticles on the rheological properties of cement paste. Compos. B Eng. 105, 160–166 (2016). https://doi.org/10.1016/J.COMPOSITESB.2016.08.040

    Article  Google Scholar 

  40. X. Sun, H. Du, Effect of oxygen deficiency on vis-light photocatalytic activity in AZO. Micro Nano Lett 14, 1303–1306 (2019). https://doi.org/10.1049/MNL.2019.0166

    Article  Google Scholar 

  41. A.V. Rane, K. Kanny, V.K. Abitha, S. Thomas, S. Thomas, Methods for synthesis of nanoparticles and fabrication of nanocomposites, in Synthesis of Inorganic Nanomaterials: Advances and Key Technologies, pp. 121–39 (2018). https://doi.org/10.1016/B978-0-08-101975-7.00005-1

  42. N. Baig, I. Kammakakam, W. Falath, I. Kammakakam, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Mater Adv 2, 1821–1871 (2021). https://doi.org/10.1039/D0MA00807A

    Article  Google Scholar 

  43. I. Khan, K. Saeed, I. Khan, Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019). https://doi.org/10.1016/J.ARABJC.2017.05.011

    Article  Google Scholar 

  44. M. Barberio, S. Giusepponi, S. Vallières, M. Scisció, M. Celino, P. Antici, Ultra-fast high-precision metallic nanoparticle synthesis using laser-accelerated protons. Sci. Rep. 10, 1–17 (2020). https://doi.org/10.1038/s41598-020-65282-9

    Article  Google Scholar 

  45. S.H. Zyoud, I.S. Yahia, M. Shahwan, A.H. Zyoud, H.Y. Zahran, M.S. Abdel-wahab et al., Fast and excellent enhanced photocatalytic degradation of methylene blue using silver-doped zinc oxide submicron structures under blue laser irradiation. Crystals 13, 229 (2023). https://doi.org/10.3390/CRYST13020229

    Article  Google Scholar 

  46. S.H. Zyoud, N.M. Ahmed, A.S.Z. Lahewil, A.F. Omar, Micro spot ZnO nanotubes using laser assisted chemical bath deposition: a low-cost approach to UV photodetector fabrication. Sens. Actuators A Phys. (2022). https://doi.org/10.1016/J.SNA.2022.113485

    Article  Google Scholar 

  47. M. Tomkiewicz, Environmental aspects of electrodeposition, in Modern Electroplating (Wiley, Hoboken, 2011), pp. 555–71. https://doi.org/10.1002/9780470602638.ch26

  48. T.H. Alabdulaal, M. Alshadidi, M.S.A. Hussien, V. Ganesh, A. Bouzidi, H. Algarni et al., One-pot synthesis of multifunctionalized Nd2O3 dispersed ZnO nanocomposites for enhancing electrical, optical, and photocatalytic applications. J. Mark. Res. 19, 967–988 (2022). https://doi.org/10.1016/J.JMRT.2022.05.057

    Article  Google Scholar 

  49. T.H. Alabdulaal, V. Ganesh, M. Alshadidi, M.S.A. Hussien, A. Bouzidi, H. Algarni et al., The auto-combustion method synthesized Eu2O3-ZnO nanostructured composites for electronic and photocatalytic applications. Materials 15, 3257 (2022). https://doi.org/10.3390/MA15093257

    Article  ADS  Google Scholar 

  50. Clinical and Laboratory Standards Institute (CLSI), Performance Standards for Antimicrobial Disk Susceptibility Testing. vol. 38. 28th ed. M100S, USA (2018)

  51. L. Qin, F.J. Mawignon, M. Hussain, N.K. Ange, S. Lu, M. Hafezi et al., Economic friendly ZnO-based UV sensors using hydrothermal growth: a review. Materials 14, 4083 (2021). https://doi.org/10.3390/MA14154083

    Article  ADS  Google Scholar 

  52. E. Wagner, W. Maudez, S. Bagdzevicius, S.C. Sandu, G. Benvenuti, Chemical beam vapour deposition technique with Sybilla equipment: review of main results in its 20-year anniversary. 2021. https://doi.org/10.1117/12.2591443

  53. J. Gonz醠ez-Fern醤dez, D. David Pinz髇-Moreno, A. Alexander Neciosup-Puican, M. Ver髇ica Carranza-Oropeza, Green method, optical and structural characterization of ZnO nanoparticles synthesized using leaves extract of M. oleifera. J. Renew. Mater. 10, 833–47 (2021). https://doi.org/10.32604/JRM.2021.017377

  54. O. Pakma, C. Özaydın, Ş Özden, I.A. Kariper, Ö. Güllü, Synthesis and characterization of vanadium oxide thin films on different substrates. J. Mater. Sci. Mater. Electron. 28, 10909–10913 (2017). https://doi.org/10.1007/S10854-017-6870-1

    Article  Google Scholar 

  55. X. Wang, M. Ahmad, H. Sun, Three-dimensional ZnO hierarchical nanostructures: solution phase synthesis and applications. Materials 10, 1304 (2017). https://doi.org/10.3390/MA10111304

    Article  ADS  Google Scholar 

  56. V.P. Chauhan, Z. Popović, O. Chen, J. Cui, D. Fukumura, M.G. Bawendi et al., Fluorescent nanorods and nanospheres for real-time in vivo probing of nanoparticle shape-dependent tumor penetration. Angew. Chem. Int. Ed. Engl. 50, 11417–11420 (2011). https://doi.org/10.1002/ANIE.201104449

    Article  Google Scholar 

  57. K. Handore, S. Bhavsar, A. Horne, P. Chhattise, K. Mohite, J. Ambekar et al., Novel green route of synthesis of ZnO nanoparticles by using natural biodegradable polymer and its application as a catalyst for oxidation of aldehydes. J. Macromol. Sci. A 51, 941–947 (2014). https://doi.org/10.1080/10601325.2014.967078

    Article  Google Scholar 

  58. J. Li, J. Guo, H. Dai, Probing dissolved CO2(aq) in aqueous solutions for CO2 electroreduction and storage. Sci. Adv. 8, 399 (2022). https://doi.org/10.1126/SCIADV.ABO0399

    Article  Google Scholar 

  59. Q. Zhou, J.Z. Wen, P. Zhao, W.A. Anderson, Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst. Nanomaterials 7, 9 (2017). https://doi.org/10.3390/NANO7010009

    Article  Google Scholar 

  60. X. Zhang, J. Qin, Y. Xue, P. Yu, B. Zhang, L. Wang et al., Effect of aspect ratio and surface defects on the photocatalytic activity of ZnO nanorods. Sci. Rep. 4, 1–8 (2014). https://doi.org/10.1038/srep04596

    Article  Google Scholar 

  61. X.G. Han, H.Z. He, Q. Kuang, X. Zhou, X.H. Zhang, T. Xu et al., Controlling morphologies and tuning the related properties of nano/microstructured ZnO crystallites. J. Phys. Chem. C 113, 584–589 (2008). https://doi.org/10.1021/JP808233E

    Article  Google Scholar 

  62. P. Peerakiatkhajohn, T. Butburee, J.-H. Sul, S. Thaweesak, J.-H. Yun, Efficient and rapid photocatalytic degradation of methyl orange dye using Al/ZnO nanoparticles. Nanomaterials 11, 1059 (2021). https://doi.org/10.3390/nano11041059

    Article  Google Scholar 

  63. T.S. Algarni, N.A.Y. Abduh, A. Aouissi, K.A. Al, Photodegradation of methyl orange under solar irradiation on Fe-doped ZnO nanoparticles synthesized using wild olive leaf extract. Green Process. Synth. 11, 895–906 (2022). https://doi.org/10.1515/gps-2022-0077

    Article  Google Scholar 

  64. P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, T. Ratana, Surface and photocatalytic properties of ZnO thin film prepared by sol–gel method. Thin Solid Films 520, 5561–5567 (2012). https://doi.org/10.1016/J.TSF.2012.04.050

    Article  ADS  Google Scholar 

  65. W.-B. Lee, H.-J. Jeong, H.-M. Kim, J.-S. Park, Plasma-enhanced atomic layer deposition of aluminum-indium oxide thin films and associated device applications. J. Vac. Sci. Technol. A Vac. Surf. Films 40, 032402 (2022). https://doi.org/10.1116/6.0001643

    Article  ADS  Google Scholar 

  66. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Structural, optical and photocatalysis properties of sol–gel deposited Al-doped ZnO thin films. Surfaces and Interfaces 16, 120–126 (2019). https://doi.org/10.1016/J.SURFIN.2019.05.007

    Article  Google Scholar 

  67. A. Meng, L. Zhang, B. Cheng, J. Yu, Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. (2019). https://doi.org/10.1002/ADMA.201807660

    Article  Google Scholar 

  68. S. Lettieri, M. Pavone, A. Fioravanti, L.S. Amato, P. Maddalena, Charge carrier processes and optical properties in TiO2 and TiO2-based heterojunction photocatalysts: a review. Materials 14, 1645 (2021). https://doi.org/10.3390/MA14071645

    Article  ADS  Google Scholar 

  69. M.W. Alam, A. BaQais, T.A. Mir, I. Nahvi, N. Zaidi, A. Yasin, Effect of Mo doping in NiO nanoparticles for structural modification and its efficiency for antioxidant, antibacterial applications. Sci. Rep. 13, 1–17 (2023). https://doi.org/10.1038/s41598-023-28356-y

    Article  Google Scholar 

  70. S.H. Zyoud, S.O. Alalalmeh, O.E. Hegazi, I.S. Yahia, H.Y. Zahran, H.A. Sara et al., Novel laser-assisted chemical bath synthesis of pure and silver-doped zinc oxide nanoparticles with improved antimicrobial and photocatalytic properties. Catalysts 13, 900 (2023). https://doi.org/10.3390/CATAL13050900

    Article  Google Scholar 

  71. V. Saxena, L.M. Pandey, Synthesis, characterization and antibacterial activity of aluminum doped zinc oxide. Mater. Today Proc. 18, 1388–1400 (2019). https://doi.org/10.1016/j.matpr.2019.06.605

    Article  Google Scholar 

  72. C. Manoharan, G. Pavithra, M. Bououdina, S. Dhanapandian, P. Dhamodharan, Characterization and study of antibacterial activity of spray pyrolysed ZnO: Al thin films. Appl. Nanosci. (Switzerland) 6, 815–825 (2016). https://doi.org/10.1007/S13204-015-0493-8/TABLES/3

    Article  ADS  Google Scholar 

  73. M.J. Klink, N. Laloo, A. Taka, V. Pakade, M. Monapathi, J. Modise, Synthesis, characterization and antimicrobial activity of zinc oxide nanoparticles against selected waterborne bacterial and yeast pathogens. Molecules (2022). https://doi.org/10.3390/MOLECULES27113532

    Article  Google Scholar 

  74. R.K. Sharma, R. Ghose, Synthesis of zinc oxide nanoparticles by homogeneous precipitation method and its application in antifungal activity against Candida albicans. Ceram. Int. 41, 967–975 (2015). https://doi.org/10.1016/J.CERAMINT.2014.09.016

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude towards Taimoor Ahmad and Sohaib Naseem Khan from Ajman University for their expert contribution to conducting FTIR analysis and nanoparticle synthesis, which significantly improved the quality of the research. They also appreciate Bayan Alradi, Bashayer Al Maamari, and Jamil Hassan Al Alami from Ajman University for their diligent efforts in collecting the photocatalyst data, which was crucial in completing the study. Furthermore, the authors thank Abdul Razack Hajamohideen from United Arab Emirates University for his invaluable contributions in providing SEM and XRD analyses. These individuals' expertise and hard work have greatly enriched the research and helped achieve the scientific objectives.

Funding

This work was kindly supported by the Deanship of Graduate Studies and Research, Ajman University, Ajman, UAE, for the financial assistance through Grant number (Project ID, DGSR Ref. Number: 2022-IRG-HBS-1).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, SHZ and AHZ; methodology, SHZ and ISY; software, MGD and GNM; validation, SHZ, SOA, OEH; formal analysis, SHZ, SOA, OEH, AAJ, and HYZ; investigation, SHZ, SOA, OEH, MN; resources, SHZ, MS, NH, and NQ; data curation, SHZ, SOA, OEH, HAS, SHB, and AA; writing—original draft, SHZ, SOA, OEH, GNM and EAK; writing—review and editing, SHZ, SOA, OEH, MS, EAK, and ISY; visualization, AA,; supervision, SHZ; project administration, SHZ; funding acquisition, SHZ. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Samer H. Zyoud.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Institutional review board statement

Not applicable.

Informed consent statement

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zyoud, S.H., Hegazi, O.E., Alalalmeh, S.O. et al. Enhanced photocatalytic and antimicrobial properties of undoped and aluminum-doped zinc oxide nanosheets synthesized via novel laser-assisted chemical bath technique. Appl. Phys. A 129, 750 (2023). https://doi.org/10.1007/s00339-023-07033-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07033-x

Keywords

Navigation