Skip to main content
Log in

Impact of VO2+ ions on the electron paramagnetic resonance and optical studies of Zn[CH2NH2COOH]SO4 single crystal: an exploration of spin Hamiltonian and molecular orbital parameters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Investigation of the VO2+ ions in a single crystal of glycine zinc sulphate (GZS) using electron paramagnetic resonance (EPR) spectroscopy is done at ambient temperature. The single crystal was formed using a solution growth process that slowly evaporated at room temperature. EPR spectrum has been recorded for three mutually orthogonal crystal planes of the prepared GZS single crystal. In the present research work, two identical distinguishable VO2+ ion sites have been followed and analyzed. According to the calculated g-principle values, the examination of the hyperfine line positions for all three planes explains why the impurity ion occupies rhombic crystal field symmetry with the surrounding ligands. Additionally, it is revealed that both sites occupy as a substitutional position in the crystal lattice site by taking the place of the zinc ion site, since the effect of spin–orbital motion coupling is dependent on the distinct nature of the paramagnetic ion environment. The optical absorption spectrum of vanadyl ions-doped glycine zinc sulphate was measured in the UV–Vis–NIR range. Comparing Spin Hamiltonian parameters and optical absorption studies, the molecular orbital coefficient values, such as β1*2, β2*2, eπ*2, K, (1 − α2), and (1 − γ2), were calculated. From the above data, the ionic bonding nature and contribution of σ, π bonding were found out which decide the different behaviors of electrons affecting the crystal properties. These results indicate that the GZS-VO2+ single crystal system could serve as a suitable material for the NLO device application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Y. NejatyJahromy, S.C. Roy, R. Glaum, O. Schiemann, Appl. Magn. Reson. Magn. Reson. 52, 169–175 (2021)

    Article  Google Scholar 

  2. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (2012).

  3. C. K. Jorgensen, Modern Aspects of Crystal Field (2012).

  4. T. Berry, S. Bernier et al., J. Cryst. Growth 583, 126518 (2022)

    Article  Google Scholar 

  5. N. Dropka, M. Holena, Crystals 10(8), 663 (2020)

    Article  Google Scholar 

  6. V. Janakiraman, V. Tamilnayagam, R.S. Sundararajan, J. Mater. Sci. Mater. Electron. 31, 15477–15488 (2020)

    Article  Google Scholar 

  7. T. Notake, M. Takeda, S. Okada, T. Hosobata, Y. Yamagata, H. Minamide, Sci. Rep. 9, 14853 (2019)

    Article  ADS  Google Scholar 

  8. L. Zhang, L. Zhou, B. Hou, Q. Yin, C. Xie, Trans. Tianjin Univ. 24, 532–537 (2018)

    Article  Google Scholar 

  9. R. Dhanjayan, S. Suresh, S. Srinivasan, S. Sahaya Jude Dhas, Polycycl. Aromat. Compd.. Aromat. Compd. 43, 64–79 (2023)

    Article  Google Scholar 

  10. J. Wang, Yu. Haohai, Wu. Yicheng, R. Boughton, Engineering 1, 192–210 (2015)

    Article  Google Scholar 

  11. N. Subbulakshmi, S. Radha Krishnan, V.M. Shanmugam, P. Subramanian, Appl. Phys. A Phys. A 125, 95 (2019)

    Article  ADS  Google Scholar 

  12. E. Kalfaoglu, B. Karabulut, Phys. B: Condens. Matter 497, 19–22 (2016)

    Article  ADS  Google Scholar 

  13. N. Nithiya, P. Vickraman, Int. J. Mech. Eng. 7, 2138–2148 (2022)

    Google Scholar 

  14. A.K. Yadav, H. Govind, R. Kripal, Inorg. Chem. Commun.. Chem. Commun. 143, 109635 (2022)

    Article  Google Scholar 

  15. R. Kripal, M.G. Misra, Appl. Magn. Reson. 44, 759–779 (2013)

    Article  Google Scholar 

  16. R. Prabakaran, P. Subramanian, AIP Conf. Proc. 1665, 090003 (2015)

    Article  Google Scholar 

  17. N. Nithya, R. Mahalakshmi, Mater. Res. 18, 581–587 (2015)

    Article  Google Scholar 

  18. A. Shiny Febena, M. Victor Antony Raj, Mater. Today: Proc. 8, 435–443 (2019)

    Google Scholar 

  19. K. Juliet Sheela, S. Radha Krishnan, V.M. Shanmugam, P. Subramanian, J. Mol. Struct. Mol. Struct. 1131, 149–155 (2017)

    Article  ADS  Google Scholar 

  20. R. Kripal, S.D. Pandey, Phys. B: Condens. Matter 444, 14–20 (2014)

    Article  ADS  Google Scholar 

  21. S.K. Misra, M. Kahrizi, S.Z. Korczak, Phys. B: Condens. Matter 182, 180–186 (1992)

    Article  ADS  Google Scholar 

  22. W.-T. Chen, B.-F. Zhang, Q.-Y. Zhu, T.-T. Lu, W.-R. Jia, Z. Cao, J.-Z. Lin, Iran. J. Sci. Technol. Trans. A: Sci. 44, 1559 (2020)

    Article  Google Scholar 

  23. Y. Mei, W.-C. Zheng, Optik 202, 163570 (2019)

    Article  ADS  Google Scholar 

  24. I. Sougandi, T.M. Rajendiran, R. Venkatesan, P. Sambasiva-Rao, Proc. Indian Acad. Sci. (Chem. Sci.) 114, 473–479 (2002)

    Article  Google Scholar 

  25. R. Kripal, M. Maurya, Phys. B: Condens. Matter 404, 1532–1537 (2009)

    Article  ADS  Google Scholar 

  26. A.K. Viswanath, J. Chem. Phys. 67, 3744–3757 (1977)

    Article  ADS  Google Scholar 

  27. V.F. Tarasov, A.A. Sukhanov, E.V. Zharikov, Appl. Mag. Res. 53, 1211–1226 (2022)

    Article  Google Scholar 

  28. B. Srinivas, A. Hameed et al., J. Phys. Chem. Solids 129, 22–30 (2019)

    Article  ADS  Google Scholar 

  29. R.B. Kannan, A. Chandramohan, J.C. Sekar, M.A. Kandhaswamy, Cryst. Res. Technol. 42, 595–600 (2007)

    Article  Google Scholar 

  30. T. Rajyalakshmi, S.J. Basha, V. Khidhirbrahmendra, U.S.U. Thampy, R.V.S.S.N. Ravikumar, J. Mol. Struct. 1205, 127605 (2020)

    Article  Google Scholar 

  31. R. Ittyachan, P. Sagayaraj, J. Cryst. Growth 249, 550–557 (2003)

    ADS  Google Scholar 

  32. P.N. Selvakumar, V.P. Subbulakshmi, P. Subramanian, Z. Nat. 62a, 462–466 (2007)

    Google Scholar 

  33. N. Subbulakshmi, M. Saravana Kumar, K. Juliet Sheela, S. Radha Krishnan, V.M. Shanmugam, P. Subramanian, Phys. B: Condens. Matter 526, 110–116 (2017)

    Article  ADS  Google Scholar 

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Contributions

KJS (corresponding author): investigation, methodology, formal analysis, EPR spectrum analysis, writing—original draft, and revision. PSK: results finding using Mat lab software, review and editing manuscript, grammar checking, and revision.

Corresponding author

Correspondence to K. Juliet Sheela.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical standards

This article does not contain any studies involving human participants performed by any of the authors.

Research data policy and data availability statements

The authors agree with the availability of data transparency as per Journal guidelines. The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juliet Sheela, K., Suthanthira Kumar, P. Impact of VO2+ ions on the electron paramagnetic resonance and optical studies of Zn[CH2NH2COOH]SO4 single crystal: an exploration of spin Hamiltonian and molecular orbital parameters. Appl. Phys. A 129, 740 (2023). https://doi.org/10.1007/s00339-023-07016-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07016-y

Keywords

Navigation