Skip to main content
Log in

Suggesting a new modification of the Cole–Cole model for the purposes of explaining and describing the optical dielectric relaxation phenomena

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cole–Cole model for electric–dielectric relaxation has been developed to be applicable in the case of optical dielectric relaxation. Such achievement, in addition to Tauc's relationship, should help in exacting the extracted optical parameters of an optical medium for the purposes of optoelectronic applications. One sample of barium lead sodium borate glass has been prepared using the traditional techniques and methods. The amorphous nature prepared of the sample has been characterized using both the X-ray diffraction XRD technique and Fourier transform infrared FTIR spectral analysis. XRD pattern revealed only two broad humps, while FTIR spectrum revealed the existence of three basic structural units BO3, BO4, and PbO4. While UV–Vis optical measurements showed the prepared sample is of low optical transmittance (high absorption rate per meter). The optical analysis showed that both the surface, SELF, and volume, VELF, energy loss functions decreased as the photon's frequency increased. The SELF values are found to be lesser than the VELF values, which means that the prepared sample has a high absorption rate and a low reflection rate at all UV–Vis regions. Finally, the Cole–Cole approximation has been modified successively, by the first author Hosam M Gomaa, to simulate and describe the optical dielectric relaxation for the prepared glass, where the resulting parameters helped in determining the number of relaxation processes that contributed to the optical spectrum. The new approximation helped in determining the hidden absorption peaks in the UV region. The resulted Cole–Cole parameter showed small values (less than unity), confirming the amorphous nature of the prepared sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

All data will be available when required.

References

  1. M. Bengisu, J. Mater. Sci. 51, 2199 (2016)

    Article  ADS  Google Scholar 

  2. L. Koudelka, P. Mošner, M. Zeyer, C. Jäger, J. Non. Cryst. Solids 326–327, 72 (2003)

    Article  Google Scholar 

  3. M. Abdel-Baki, F. El-Diasty, Curr. Opin. Solid State Mater. Sci. 10, 217 (2006)

    Article  ADS  Google Scholar 

  4. Y.B. Saddeek, K. Aly, G. Abbady, N. Afify, K.S. Shaaban, A. Dahshan, J. Non. Cryst. Solids 454, 13 (2016)

    Article  ADS  Google Scholar 

  5. S. Singh, G. Kalia, K. Singh, J. Mol. Struct. 1086, 239 (2015)

    Article  ADS  Google Scholar 

  6. Y.B. Saddeek, M.S. Gaafar, Mater. Chem. Phys. 115, 280 (2009)

    Article  Google Scholar 

  7. A.N. D’Souza, N.S. Prabhu, K. Sharmila, M.I. Sayyed, H.M. Somshekarappa, G. Lakshminarayana, S. Mandal, S.D. Kamath, J. Non. Cryst. Solids 542, 120136 (2020)

    Article  Google Scholar 

  8. S. C. Kim, J. R. Choi, and B. K. Jeon, Sci. Rep. 6, (2016).

  9. H. A. Saudi, H. M. Gomaa, E. S. H. El-Mosallamy, and S. M. Elkatlawy, Polym. Polym. Compos. (2021).

  10. H. M. Gomaa, M. I. Sayyed, H. O. Tekin, G. Lakshminarayana, and A. H. EL-Dosokey, Phys. B Condens. Matter 567, 109 (2019).

  11. H. M. Gomaa, I. S. Yahia, B. M. A. Makram, A. H. El-Dosokey, and S. M. Elkatlawy, J. Mater. Sci. Mater. Electron. (2021).

  12. N. Hao, G. Zhang, Z. Yang, G. Qin, H. Jin, S. Gao, J. Non. Cryst. Solids 601, 122042 (2023)

    Article  Google Scholar 

  13. S. Li, Y. Lu, Y. Qu, J. Kang, Y. Yue, X. Liang, J. Non. Cryst. Solids 556, 120550 (2021)

    Article  Google Scholar 

  14. M. Shapaan, F.M. Ebrahim, Phys. B Condens. Matter 405, 3217 (2010)

    Article  ADS  Google Scholar 

  15. H. Kchaou, K. Karoui, K. Khirouni, and A. Ben Rhaiem, J. Alloys Compd. 728, 936 (2017).

  16. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  17. T.D. AbdelAziz, F.M. EzzElDin, H.A. El Batal, A.M. Abdelghany, Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 131, 497 (2014)

    Article  ADS  Google Scholar 

  18. H.M. Gomaa, J. Non. Cryst. Solids 481, 51 (2018)

    Article  ADS  Google Scholar 

  19. M. K. El-Mansy, H. M. Gomaa, N. Hendawy, and A. Sabry Morsy, J. Non. Cryst. Solids 485, 42 (2018).

  20. H.M. Gomaa, H.A. Saudi, I.S. Yahia, M.A. Ibrahim, H.Y. Zahran, Optik (Stuttg). 249, 168267 (2022)

    Article  ADS  Google Scholar 

  21. N.A. Ghoneim, A.M. Abdelghany, S.M. Abo-Naf, F.A. Moustafa, K.M. ElBadry, J. Mol. Struct. 1035, 209 (2013)

    Article  ADS  Google Scholar 

  22. M. Salem, T.Z. Abou-elnasr, W.A. El-gammal, A.S. Mahmoud, H.A. Saudi, A.G. Mostafa, Am. J. Aerosp. Eng. 5, 1 (2018)

    Article  Google Scholar 

  23. R. Boda, M.D. Shareefuddin, M.N. Chary, R. Sayanna, Mater. Today Proc. 3, 1914 (2016)

    Article  Google Scholar 

  24. H.M. Gomaa, I.S. Yahia, J. Comput. Electron. 21, 1396 (2022)

    Article  Google Scholar 

  25. H.M. Gomaa, S.M. Elkatlawy, I.S. Yahia, H.A. Saudi, A.M. Abdel-Ghany, Optik (Stuttg). 244, 167543 (2021)

    Article  ADS  Google Scholar 

  26. A.S. Hassanien, I. Sharma, Optik (Stuttg). 200, 163415 (2020)

    Article  ADS  Google Scholar 

  27. V. Ganesh, I.S. Yahia, S. AlFaify, M. Shkir, J. Phys. Chem. Solids 100, 115 (2017)

    Article  ADS  Google Scholar 

  28. M.K. El-Mansy, H.M. Gomaa, N. Hendawy, A. Sabry Morsy, J. Non-Crystalline Solids 485(January), 42–46 (2018)

    Article  ADS  Google Scholar 

  29. N.A. Ghoneim, A.M. Abdelghany, S.M. Abo-Naf, F.A. Moustafa, K.M. Elbadry, J. Molecular Structure 1035(October), 209–217 (2013)

    Article  ADS  Google Scholar 

  30. M.S. Eluyemi, M.A. Eleruja, A.V. Adedeji, B. Olofinjana, O. Fasakin, O.O. Akinwunmi, O.O. Ilori, A.T. Famojuro, S.A. Ayinde, E.O.B. Ajayi, Graphene 05(03), 143–154 (2016)

    Article  Google Scholar 

  31. K.A. Naseer, G. Sathiyapriya, K. Marimuthu, T. Piotrowski, M.S. Alqahtani, E.S. Yousef, Optik 251(December), 168436 (2022)

    Article  ADS  Google Scholar 

  32. Uran, S., Alhani, A., & Silva, C., AIP Advances, 7(3) (2017).

  33. Zhang, T., Zhu, G. Y., Yu, C. H., Xie, Y., Xia, M. Y., Lu, B. Y., Fei, X., & Peng, Q., Microchimica Acta, 186(3). (2019).

  34. Manoratne, C. H., Rosa, S. R. D., & Kottegoda, I. R. M., Material Science Research India, 14(1) (2017).

  35. AL-Gahouari, T., Sayyad, P., Bodkhe, G., Ingle, N., Mahadik, M., Shirsat, S., & Shirsat, M., Applied Physics A: Materials Science and Processing, 127(3), 1–16 (2021.

  36. Marzouk, M. A., ElBatal, H. A., Hamdy, Y. M., & Ezz-Eldin, F. M., International Journal of Optics (2019).

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through the large research group program number: R.G.P.2/434/44.

Author information

Authors and Affiliations

Authors

Contributions

Hosam M Gomaa suggested the research idea, performed all analysis and mathematical calculations, and wrote the primary/final manuscript. Saeid M. Elkatlawy reviewed the primary version. H. A. Saudi, H. Y. Zahran, and I. S. Yahia prepared sample, performed the experimental measurements, and reviewed the final version.

Corresponding author

Correspondence to Hosam M. Gomaa.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest. Author has no relevant financial.

Ethical approval

This study is not human and/or animal studies (not applicable).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomaa, H.M., Saudi, H.A., Elkatlaw, S.M. et al. Suggesting a new modification of the Cole–Cole model for the purposes of explaining and describing the optical dielectric relaxation phenomena. Appl. Phys. A 129, 671 (2023). https://doi.org/10.1007/s00339-023-06950-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06950-1

Keywords

Navigation