Skip to main content
Log in

Impact of transition metal (Co and Mn) substitution on the structural and magnetic properties of BaFe12O19 nanoparticles towards permanent magnet application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Given the enormous and rising global need for permanent magnet supply, even minor enhancements to the magnetic characteristics and economic viability of permanent magnet materials could result in significant energy and financial savings. In this work, the experimental conditions were optimized in order to produce barium hexaferrite (BaFe12O19) substituted with transition elements (Co and Mn) through chemical co-precipitation method. Powder X-ray Diffraction (XRD), Transmission Electron Microscope (TEM) and Fourier Transform Infra-red (FTIR) were used to reveal the structure, morphology and vibrational spectrum of the sample. The site preference for cobalt and manganese was estimated using Rietveld refinement of the XRD spectrum. It is obvious that Co and Mn occupied two crystallographic inequivalent sites, 4f2 and 4f1 respectively. Investigation of magnetic properties (VSM) at room temperature showed that as Co and Mn concentrations increase, saturation magnetization and retentivity increase, but coercivity decreases. At higher substitution concentrations, the behavior is the inverse. The possible reasons for these behaviors were discussed. The close correlation between site selection by the dopant and magnetic properties is also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the manuscript.

References

  1. S. Shah, O.P. Pandey, J. Mohammed, A.K. Srivastava, A. Gupta, D. Basandrai, J. Sol-Gel Sci. Technol. 93, 579 (2020)

    Google Scholar 

  2. M.A. Rafiq, M. Waqar, Q.K. Muhammad, M. Waleed, M. Saleem, M.S. Anwar, J. Mater. Sci. Mater. Electron. 29, 5134 (2018)

    Google Scholar 

  3. V. Turchenko, A.S. Bondyakov, S. Trukhanov, I. Fina, V.V. Korovushkin, M. Balasoiu, S. Polosan, B. Bozzo, N. Lupu, A. Trukhanov, J. Alloys Compd. 931, 167433 (2023)

    Google Scholar 

  4. R.C. Pullar, Prog. Mater. Sci. 57, 1191 (2012)

    Google Scholar 

  5. S.K. Godara, Sneh, V. Kaur, P.S. Malhi, J. Ahmed, S.M. Alshehri, M. Singh, S. Verma, C. Singh, P.K. Maji, P. Kumar, A.M. Tamboli, A.K. Sood, J. Solid State Chem. 312, 123215 (2022)

    Google Scholar 

  6. A.V. Trukhanov, L.V. Panina, S.V. Trukhanov, V.G. Kostishyn, V.A. Turchenko, D.A. Vinnik, T.I. Zubar, E.S. Yakovenko, L.Y. Macuy, E.L. Trukhanova, Ceram. Int. 44, 13520 (2018)

    Google Scholar 

  7. V.S. Shinde, S.G. Dahotre, L.N. Singh, Heliyon 6, e03186 (2020)

    Google Scholar 

  8. V.P. Singh, G. Kumar, A. Kumar, R.S. Rai, M.A. Valente, K.M. Batoo, R.K. Kotnala, M. Singh, Ceram. Int. 42, 5011 (2016)

    Google Scholar 

  9. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishin, L.V. Panina, I.S. Kazakevich, V.A. Turchenko, V.V. Kochervinskii, JETP Lett. 103, 100 (2016)

    ADS  Google Scholar 

  10. M.V. Zdorovets, A.L. Kozlovskiy, D.I. Shlimas, D.B. Borgekov, J. Mater. Sci. Mater. Electron. 32, 16694 (2021)

    Google Scholar 

  11. M. A. Almessiere, Y. Slimani, H. Güngüneş, A. Demir Korkmaz, S. V. Trukhanov, S. Guner, F. Alahmari, A. V. Trukhanov, A. Baykal, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 270, 115202 (2021)

    Google Scholar 

  12. A. Kozlovskiy, K. Egizbek, M. V. Zdorovets, M. Ibragimova, A. Shumskaya, A. A. Rogachev, Z. V. Ignatovich, K. Kadyrzhanov, Sensors Lett. 20, 4851 (2020)

    ADS  Google Scholar 

  13. C. de Julián Fernández, C. Sangregorio, J. de la Figuera, B. Belec, D. Makovec, A. Quesada, J. Phys. D. Appl. Phys. 54, 153001 (2021)

    ADS  Google Scholar 

  14. S. Kumar, M. Kumar Manglam, S. Supriya, H. Kumar Satyapal, R. Kumar Singh, M. Kar, J. Magn. Magn. Mater. 473, 312 (2019)

    ADS  Google Scholar 

  15. V.A. Turchenko, S.V. Trukhanov, V.G. Kostishin, F. Damay, F. Porcher, D.S. Klygach, M.G. Vakhitov, D. Lyakhov, D. Michels, B. Bozzo, I. Fina, M.A. Almessiere, Y. Slimani, A. Baykal, D. Zhou, A.V. Trukhanov, Sci. Rep. 11, 1 (2021)

    Google Scholar 

  16. M. Alzaid, Adv. Condens. Matter Phys. 2021, 6 (2021)

    Google Scholar 

  17. H. Sözeri, H. Deligöz, H. Kavas, A. Baykal, Ceram. Int. 40, 8645 (2014)

    Google Scholar 

  18. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci. Mater. Electron. 31, 11729 (2020)

    Google Scholar 

  19. A.M. Semaida, M.A. Darwish, M.M. Salem, D. Zhou, T.I. Zubar, S.V. Trukhanov, A.V. Trukhanov, V.P. Menushenkov, A.G. Savchenko, Nanomaterials 12, 3452 (2022)

    Google Scholar 

  20. Y. Liu, Y. Liu, M.G.B. Drew, J. Magn. Magn. Mater. 323, 945 (2011)

    ADS  Google Scholar 

  21. H. Nikmanesh, M. Moradi, P. Kameli, G.H. Bordbar, J. Electron. Mater. 46, 5933 (2017)

    ADS  Google Scholar 

  22. A. Thakur, R.R. Singh, P.B. Barman, Mater. Chem. Phys. 141, 562 (2013)

    Google Scholar 

  23. M. Khandani, M. Yousefi, S.S.S. Afghahi, M.M. Amini, M.B. Torbati, Mater. Chem. Phys. 235, 121722 (2019)

    Google Scholar 

  24. H. Nikmanesh, M. Moradi, G.H. Bordbar, R. Shams Alam, J. Alloys Compd. 708, 99 (2017)

    Google Scholar 

  25. A. Kumar, M.K. Verma, S. Singh, T. Das, L. Singh, K.D. Mandal, J. Electron. Mater. 49, 6436 (2020)

    ADS  Google Scholar 

  26. D.A. Vinnik, A.Y. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar, S.V. Trukhanov, J. Kohout, T. Kmječ, O. Yakovenko, L. Matzui, A.S.B. Sombra, D. Zhou, R.B. Jotania, C. Singh, A.V. Trukhanov, Ceram. Int. 47, 17293 (2021)

    Google Scholar 

  27. V.A. Turchenko, S.V. Trukhanov, V.G. Evich Kostishin, F. Damay, F. Porcher, D.S. Klygach, M.G. Evich Vakhitov, L.Y. Evna Matzui, O.S. Yakovenko, B. Bozzo, I. Fina, M.A. Almessiere, Y. Slimani, A. Baykal, D. Zhou, A.V. Trukhanov, J. Energy Chem. 69, 667 (2022)

    Google Scholar 

  28. D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, J. Mater. Sci. Mater. Electron. 32, 7410 (2021)

    Google Scholar 

  29. S.V. Trukhanov, J. Exp. Theor. Phys. 100, 95 (2005)

    ADS  Google Scholar 

  30. M. Bhagwat, A.V. Ramaswamy, A.K. Tyagi, V. Ramaswamy, Mater. Res. Bull. 38, 1713 (2003)

    Google Scholar 

  31. M.K. Manglam, S. Kumari, J. Mallick, M. Kar, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    ADS  Google Scholar 

  32. K. Tanwar, D.S. Gyan, P. Gupta, S. Pandey, Omparkash, D. Kumar, RSC Adv. 8, 1900 (2018)

    Google Scholar 

  33. S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, J. Exp. Theor. Phys. 96, 110 (2003)

    ADS  Google Scholar 

  34. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, A.M. Balagurov, H. Szymczak, J. Exp. Theor. Phys. 113, 819 (2011)

    ADS  Google Scholar 

  35. S.V. Trukhanov, J. Exp. Theor. Phys. 101, 513 (2005)

    ADS  Google Scholar 

  36. D. Shekhawat, I. Ahmad, P.K. Roy, Mater. Chem. Phys. 259, 124196 (2021)

    Google Scholar 

  37. H. Basma, H. T. Rahal, R. Awad, J. Magn. Magn. Mater. 539, 168413 (2021)

    Google Scholar 

  38. H. Nikmanesh, S. Hoghoghifard, B. Hadi-Sichani, J. Alloys Compd. 775, 1101 (2019)

    Google Scholar 

  39. R. Pandey, L. Kumar Pradhan, S. Kumari, M. Kumar Manglam, S. Kumar, M. Kar, J. Magn. Magn. Mater. 508, 166862 (2020)

    Google Scholar 

  40. J. Lee, E.J. Lee, T.Y. Hwang, J. Kim, Y.H. Choa, Sci. Rep. 10, 1 (2020)

    Google Scholar 

  41. R. Topkaya, J. Alloys Compd. 725, 1230 (2017)

    Google Scholar 

  42. M.A. Almessiere, Y. Slimani, N.A. Tashkandi, A. Baykal, M.F. Saraç, A.V. Trukhanov, E. Belenli, B. Ozçelik, Ceram. Int. 45, 1691 (2019)

    Google Scholar 

  43. H. Kumar Satyapal, R. Kumar Singh, N. Kumar, S. Sharma, Mater. Today Proc. 28, 234 (2020)

    Google Scholar 

  44. M.A. Rafiq, M. Waqar, T.A. Mirza, A. Farooq, A. Zulfiqar, J. Electron. Mater. 46, 241 (2017)

    ADS  Google Scholar 

  45. A. Gonzalez-Angeles, G. Mendoza-Suarez, A. Gruskov, I. Toth, V. Jancarik, M. Papanova, J.I. Escalante-Garcia, J. Magn. Magn. Mater. 270, 77 (2004)

    ADS  Google Scholar 

  46. V. Manisha, Mössbauer and F-I studies on non-stoichiometric barium Hexaferrites. J. Magn. Magn. Mater. 192, 288 (1999)

    Google Scholar 

  47. S. Kumar, S. Supriya, R. Pandey, L.K. Pradhan, R.K. Singh, M. Kar, J. Magn. Magn. Mater. 458, 30 (2018)

    ADS  Google Scholar 

  48. M.K. Manglam, S. Kumari, L.K. Pradhan, S. Kumar, M. Kar, Phys. B Condens. Matter 588, 412200 (2020)

    Google Scholar 

  49. M.M. Barakat, D.E.-S. Bakeer, A.-H. Sakr, J. Taibah Univ. Sci. 14, 640 (2020)

    Google Scholar 

  50. S. Kumar-Godara, V. Kaur, S.B. Narang, M. Singh, G.R. Bhadu, J.C. Chaudhari, R.K. Mudsainiyan, A.K. Sood, Mater. Res. Express 6, 116111 (2019)

    ADS  Google Scholar 

  51. C. Kittel, Phys. Rev. 73, 810 (1948)

    ADS  Google Scholar 

  52. V.N. Dhage, M.L. Mane, A.P. Keche, C.T. Birajdar, K.M. Jadhav, Phys. B Condens. Matter 406, 789 (2011)

    ADS  Google Scholar 

  53. P. Behera, S. Ravi, J. Electron. Mater. 48, 5062 (2019)

    ADS  Google Scholar 

  54. B. Abraime, K. El Maalam, L. Fkhar, A. Mahmoud, F. Boschini, M. Ait Tamerd, A. Benyoussef, M. Hamedoun, E.K. Hlil, M. Ait Ali, A. El-Kenz, O. Mounkachi, J. Magn. Magn. Mater. 500, 166416 (2020)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the central instrumental facility (IIT Guwahati) for permitting us to utilize the necessary instruments for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Borah.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests. The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moatoshi, Borgohain, C., Kaushik, S.D. et al. Impact of transition metal (Co and Mn) substitution on the structural and magnetic properties of BaFe12O19 nanoparticles towards permanent magnet application. Appl. Phys. A 129, 607 (2023). https://doi.org/10.1007/s00339-023-06882-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06882-w

Keywords

Navigation