Skip to main content
Log in

High-sensitive plasmonic multilayer SiO2/VO2 metamaterial sensor

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper presents a plasmonic metamaterial sensor utilizing an I-shaped gold resonator. The sensor is simulated using the finite-element method (FEM) to detect gas and liquid (ethanol solutions) in the infrared wavelength range of 0.5–2.5 µm. The sensor structure consists of three layers, with a VO2 substrate sandwiched between a bottom SiO2 substrate and a top gold resonator. The design exhibits distinct absorption characteristics across the range of 0.5–2.5 µm, tailored for different gas and liquid sensing applications. A comparison is made between the two states of VO2 to investigate the sensitivity of the device. Geometrical parameters, including height and width, are optimized, and three types of comparisons are conducted. First, a sensitivity comparison is made between this work and previously published research. Second, a Quality factor and Figure of Merit comparison is performed. Finally, a sensitivity comparison is made between different sensing techniques and the technique employed in this work. After optimizing the design parameters, the device demonstrates the highest detection sensitivity for gas and ethanol solutions, yielding results of 2800 (nm/RIU) and 2600 (nm/RIU), respectively. The proposed I-shaped gold-based metamaterial exhibits the potential to be utilized as a lab-on-chip biosensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Data of this study are available from the corresponding Author on responsible request.

References

  1. G. Singh, R. Ni, A. Marwaha, Int. J. Eng. Trends Technol. 19, 305 (2015)

    Google Scholar 

  2. D. Prakash, N. Gupta, Int. J. Microw. Wirel. Technol. 14, 19 (2022)

    Google Scholar 

  3. S.K. Patel, V. Sorathiya, Z. Sbeah, S. Lavadiya, T.K. Nguyen, V. Dhasarathan, Opt. Commun. 474, 126109 (2020)

    Google Scholar 

  4. Z.A. Sbeah, R.P. Dwivedi, V. Sorathiya, D. Chauhan, R. Adhikari, AIP Conf. Proc. 2640, 020007 (2022)

    Google Scholar 

  5. Y. Cheng, Y. Qian, H. Luo, F. Chen, Z. Cheng, Physica E Low Dimens. Syst. Nanostruct. 146, 115527 (2023)

    Google Scholar 

  6. Z. Li, Y. Cheng, H. Luo, F. Chen, X. Li, J. Alloys Compd. 925, 166617 (2022)

    Google Scholar 

  7. F. Chen, Y. Cheng, H. Luo, IEEE Access 8, 82981 (2020)

    Google Scholar 

  8. W. Li, Y. Cheng, Opt. Commun. 462, 125265 (2020)

    Google Scholar 

  9. Y. Cheng, J. Zhao, Phys. Scr. 97, 095508 (2022)

    ADS  Google Scholar 

  10. Y. Cheng, Z. Li, Z. Cheng, Opt. Mater. (Amst.) 117, 111129 (2021)

    Google Scholar 

  11. J. Zhao, Y. Cheng, Adv. Theory Simul. 5, 2200520 (2022)

    Google Scholar 

  12. J. Homola, M. Piliarik, Surface plasmon resonance (SPR) sensors (Springer, Berlin, Heidelberg, 2006)

    Google Scholar 

  13. R. Adhikari, Z. Sbeah, R. Gupta, D. Chauhan, J.M. Nunzi, R.P. Dwivedi, Plasmonics 17, 1593 (2022)

    Google Scholar 

  14. B.A. Prabowo, A. Purwidyantri, K.C. Liu, Biosensors (Basel) 8, 80 (2018)

    Google Scholar 

  15. D. Chauhan, Z. Sbeah, R. Adhikari, M.S. Thakur, S.H. Chang, R.P. Dwivedi, Opt. Mater. (Amst.) 125, 112078 (2022)

    Google Scholar 

  16. R. Adhikari, D. Chauhan, G.T. Mola, R.P. Dwivedi, Opto-Electron. Rev. 29(4), 148 (2021)

    Google Scholar 

  17. R. Adhikari, Z. Sbeah, D. Chauhan, S.H. Chang, R.P. Dwivedi, Braz. J. Phys. 52, 61 (2022)

    ADS  Google Scholar 

  18. S. K. Patel, J. Parmar, V. Sorathiya, and T. K. Nguyen, Sci. Rep. 1 (2021)

  19. R. Xu, Y.S. Lin, Nanomaterials 10, 1 (2020)

    ADS  Google Scholar 

  20. R. Adhikari, Z. Sbeah, D. Chauhan, D.-Y. Jeong, R.P. Dwivedi, Optik (Stuttg) 264, 169425 (2022)

    ADS  Google Scholar 

  21. J. Shibayama, K. Mitsutake, J. Yamauchi, H. Nakano, Microw. Opt. Technol. Lett. 63, 103 (2021)

    Google Scholar 

  22. Z.A. Sbeah, R. Adhikari, V. Sorathiya, D. Chauhan, S.H. Chang, R.P. Dwivedi, Plasmonics 2023, 1 (2023)

    Google Scholar 

  23. Y.G. Chen, T.S. Kao, B. Ng, X. Li, X.G. Luo, B. Lukyanchuk, S.A. Maier, M.H. Hong, Opt. Express 21, 13691 (2013)

    ADS  Google Scholar 

  24. D. Chauhan, Z. Sbeah, R.P. Dwivedi, J.M. Nunzi, M.S. Thakur, J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2021-0264

    Article  Google Scholar 

  25. Z.A. Sbeah, R. Adhikari, V. Sorathiya, D. Chauhan, A.N.Z. Rashed, S.H. Chang, R.P. Dwivedi, Plasmonics 2022, 1 (2022)

    Google Scholar 

  26. E.E. Antunez, U. Salazar-Kuri, J.O. Estevez, J. Campos, M.A. Basurto, S. Jiménez Sandoval, V. Agarwal, J. Appl. Phys. 118, 134503 (2015)

    ADS  Google Scholar 

  27. Y. Shi, L.Q. Chen, Phys. Rev. Appl. 11, 014059 (2019)

    ADS  Google Scholar 

  28. S. Hormoz, S. Ramanathan, Solid State Electron. 54, 654 (2010)

    ADS  Google Scholar 

  29. P. Baum, D.S. Yang, A.H. Zewail, Science 318, 788 (2007)

    ADS  Google Scholar 

  30. D. Chauhan, G.T. Mola, R.P. Dwivedi, Optik (Stuttg) 201, 163531 (2020)

    ADS  Google Scholar 

  31. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    ADS  Google Scholar 

  32. R.H. Sagor, M.F. Hassan, A.A. Yaseer, E. Surid, M.I. Ahmed, Appl. Nanosci. 11(2), 521 (2020)

    ADS  Google Scholar 

  33. C. Cen, Z. Chen, D. Xu, L. Jiang, X. Chen, Z. Yi, P. Wu, G. Li, Y. Yi, Nanomaterials 10, 95 (2020)

    Google Scholar 

  34. A.B. Numan, M.S. Sharawi, IEEE Antennas Propag. Mag. 55, 202 (2013)

    ADS  Google Scholar 

  35. R. Macaluso, M. Mosca, V. Costanza, A. D’Angelo, G. Lullo, F. Caruso, C. Calì, F. Di Franco, M. Santamaria, F. Di Quarto, Electron. Lett. 50, 262 (2014)

    ADS  Google Scholar 

  36. T. Cesca, C. Scian, E. Petronijevic, G. Leahu, R. Li Voti, G. Cesarini, R. Macaluso, M. Mosca, C. Sibilia, G. Mattei, Nanoscale 12, 851 (2020)

    Google Scholar 

  37. L. Zhao, L. Miao, C. Liu, C. Li, T. Asaka, Y. Kang, Y. Iwamoto, S. Tanemura, H. Gu, H. Su, Sci. Rep. 4(1), 7000 (2014)

    ADS  Google Scholar 

  38. G. Tanyi, M. Sun, R. Unnithan, IEEE Photon. Technol. Lett. J. (2020)

  39. M. Sun, W. Shieh, R.R. Unnithan, IEEE Photonics J. 9, 1–10 (2017)

    Google Scholar 

  40. Z.M. Liu, Y. Li, J. Zhang, Y.Q. Huang, Z.P. Li, J.H. Pei, B.Y. Fang, X.H. Wang, H. Xiao, J. Phys. D Appl. Phys. 50, 385104 (2017)

    Google Scholar 

  41. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano. Lett. 10, 2342 (2010)

    ADS  Google Scholar 

  42. S.K. Patel, J. Parmar, Physica B Condens. Matter. 622, 413357 (2021)

    Google Scholar 

  43. S. Sahu, J. Ali, P.P. Yupapin, G. Singh, Photonic Sens. 8, 248 (2018)

    ADS  Google Scholar 

  44. S. Sahu, J. Ali, P.P. Yupapin, G. Singh, Optik (Stuttg) 166, 103 (2018)

    ADS  Google Scholar 

  45. S.K. Patel, J. Parmar, R.B. Zakaria, A. Sharafali, T.K. Nguyen, V. Dhasarathan, IEEE Sens. J. 21, 1470 (2021)

    ADS  Google Scholar 

  46. S.Z.B.H. Jumat, C.T. Chou Chao, Y.F. Chou Chau, A.H. Mahadi, M.R.R. Kooh, N.T.R.N. Kumara, H.P. Chiang, Chin. J. Phys. 71, 286 (2021)

    Google Scholar 

  47. M.A. Butt, S.N. Khonina, N.L. Kazanskiy, J. Mod. Opt. 66, 1038 (2019). https://doi.org/10.1080/09500340.2019.1601272

    Article  ADS  Google Scholar 

  48. M.R. Rakhshani, Plasmonics 15(6), 2071 (2020)

    Google Scholar 

  49. Z.M. Meng, F. Qin, Plasmonics 13, 2329 (2018)

    Google Scholar 

  50. J. Zhu, G. Wang, Res. Phys. 15, 102763 (2019)

    Google Scholar 

  51. M.R. Rakhshani, M.A. Mansouri-Birjandi, Sens. Actuators B Chem. 249, 168 (2017)

    Google Scholar 

  52. J. Tian, J. Li, Prog. Electromagn. Res. C 98, 199 (2020)

    Google Scholar 

  53. M.J. Al-mahmod, R. Hyder, M.Z. Islam, Photonics Nanostruct. 25, 52 (2017)

    ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by Shoolini University, Solan, Himachal, India.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the study conception and design. ZAS: conceptualization, methodology, software, and writing—original draft. RA: data curation, resources, and software. VS: software—reviewing. DC: visualization and software. RSP: writing—reviewing. RPD: conceptualization and supervision editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ram Prakash Dwivedi.

Ethics declarations

Conflict of interest

There is no conflict of interest. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

We approved all ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 93 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbeah, Z.A., Adhikari, R., Sorathiya, V. et al. High-sensitive plasmonic multilayer SiO2/VO2 metamaterial sensor. Appl. Phys. A 129, 596 (2023). https://doi.org/10.1007/s00339-023-06846-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06846-0

Keywords

Navigation