Skip to main content

Advertisement

Log in

Fine ablation with depth control of 25-nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Recently, the need for enhanced cutting tools to fabricate next-generation multilayer ceramic capacitors (MLCCs) and batteries has been identified. This is because existing cutting tools cause problems such as defects, burrs, and breaking of MLCCs when the MLCCs are cut using the existing cutting tools. Furthermore, the productivity of MLCCs should be improved. To overcome these problems, enhanced cutting tools should have sharper blade angles and thinner widths. Currently, a cutting tool with a thickness of tens of micrometers is used in the industry. Also, cutting tools made of cemented tungsten carbide are difficult to machine. Therefore, fine ablation technology is required for their application. Machining technology using femtosecond lasers has been studied to realize fine ablation. However, studies on the subject are limited. Therefore, we studied fine ablation using the beam-shaping technology. In this study, a femtosecond laser with a wavelength of 1030 nm, a maximum repetition rate of 200 kHz, and a maximum pulse energy of 1 mJ was used. Additionally, a slit-optic system was used to transform the laser beam with Gaussian energy distribution into the laser beam with a quasi-flat top energy distribution. We demonstrated a machining depth resolution of 25 nm for cemented tungsten carbides using a femtosecond laser with a fluence of 0.32 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. L. Chen, H. Wang, P. Zhao, C. Zhu, Z. Cai, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 4178 (2019)

    Article  Google Scholar 

  2. R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, J. Am. Ceram. Soc. 99, 2089 (2016)

    Article  Google Scholar 

  3. L. Chen, H. Wang, P. Zhao, Z. Shen, C. Zhu, Z. Cen, L. Li, X. Wang, J. Am. Ceram. Soc. 102, 2781 (2019)

    Google Scholar 

  4. K. Hong, T.H. Lee, J.M. Suh, S.H. Yoon, H.W. Jang, J. Mater. Chem. C 7, 9782 (2019)

    Article  Google Scholar 

  5. T. Im, J. Pyo, J. Sung Lee, C.S. Lee, Powder Technol. 382, 118 (2021)

    Article  Google Scholar 

  6. E.M. Trent, P.K. Wright, Chapter 7: cutting tool materials II: Cemented carbides, in Metal Cutting, 4th edn. (Elsevier, 2000), pp.175–226

    Chapter  Google Scholar 

  7. A. Abdullah, M.R. Shabgard, A. Ivanov, M.T. Shervanyi-Tabar, Int. J. Adv. Manuf. Technol. 41, 268 (2009)

    Article  Google Scholar 

  8. K. Bonny, P. De Baets, W. Ost, S. Huang, J. Vleugels, W. Liu, B. Lauwers, Int. J. Refract. Met. Hard Mater. 27, 350 (2009)

    Article  Google Scholar 

  9. A. Rizzo, S. Goel, M.L. Grilli, R. Iglesias, L. Jaworska, V. Lapkovskis, P. Novak, B.O. Postolnyi, D. Valerini, Materials (Basel) 13, 1377 (2020)

    Article  ADS  Google Scholar 

  10. G. Eberle, K. Wegener, Phys. Procedia 56, 951 (2014)

    Article  ADS  Google Scholar 

  11. B. Ali, I.V. Litvinyuk, M. Rybachuk, Carbon N. Y. 179, 209 (2021)

    Article  Google Scholar 

  12. Y. Xie, D.J. Heath, J.A. Grant-Jacob, B.S. Mackay, M.D.T. McDonnell, M. Praeger, R.W. Eason, B. Mills, J. Phys. Photonics 1, 035002 (2019)

    Article  ADS  Google Scholar 

  13. S.-J. Xu, Y.-Z. Duan, Y.-H. Yu, Z.-N. Tian, Q.-D. Chen, Opt. Express 29, 30952 (2021)

    Article  ADS  Google Scholar 

  14. Q. Zhu, P. Fan, N. Li, T. Carlson, B. Cui, J.F. Silvain, J.L. Hudgins, Y.F. Lu, Int. J. Extrem. Manuf. 3, 045001 (2021)

    Article  Google Scholar 

  15. Z.H. Li, E.S. Cho, S.J. Kwon, Appl. Surf. Sci. 255, 9843 (2009)

    Article  ADS  Google Scholar 

  16. K. Sugioka, Y. Cheng, Appl. Phys. Rev. 1, 041303 (2014)

    Article  ADS  Google Scholar 

  17. K. Sugioka, Y. Cheng, Light Sci. Appl. 3, 1 (2014)

    Article  Google Scholar 

  18. W. Zhao, H. Liu, X. Shen, L. Wang, X. Mei, Materials (Basel) 13, 31 (2020)

    Article  ADS  Google Scholar 

  19. H. Wang, H. Lin, C. Wang, L. Zheng, X. Hu, J. Eur. Ceram. Soc. 37, 1157 (2017)

    Article  Google Scholar 

  20. H. Wu, P. Zou, J. Cao, K.F. Ehmann, J. Manuf. Process. 55, 389 (2020)

    Article  Google Scholar 

  21. H.-Y. Kim, W.-S. Choi, S.-Y. Ji, Y.-G. Shin, J.-W. Jeon, S. Ahn, S.-H. Cho, Appl. Phys. A Mater. Sci. Process. (2018). https://doi.org/10.1007/s00339-018-1553-1

    Article  Google Scholar 

  22. H. Legall, C. Schwanke, S. Pentzien, G. Dittmar, J. Bonse, J. Krüger, Appl. Phys. A Mater. Sci. Process. 124, 407 (2018)

    Article  ADS  Google Scholar 

  23. J.M. Liu, Opt. Lett. 7, 196 (1982)

    Article  ADS  Google Scholar 

  24. W. Zhao, W. Wang, G. Jiang, B.Q. Li, X. Mei, Int. J. Adv. Manuf. Technol. 80, 1713 (2015)

    Article  Google Scholar 

  25. T. Viertel, L. Pabst, R. Ebert, H. Exner, Appl. Phys. A Mater. Sci. Process. 125, 1 (2019)

    Article  Google Scholar 

  26. N.M. Bulgakova, A.V. Bulgakov, V.P. Zhukov, W. Marine, A.Y. Vorobyev, C. Guo, High-Power Laser Ablation VII 7005, 70050C (2008)

    Article  Google Scholar 

  27. R.R. Phiri, O.P. Oladijo, E.T. Akinlabi, Procedia Manuf. 35, 522 (2019)

    Article  Google Scholar 

  28. F. Di Niso, C. Gaudiuso, T. Sibillano, F.P. Mezzapesa, A. Ancona, P.M. Lugarà, Opt. Express 22, 12200 (2014)

    Article  ADS  Google Scholar 

  29. W. Wang, G. Jiang, X. Mei, K. Wang, J. Shao, C. Yang, Appl. Surf. Sci. 256, 3612 (2010)

    Article  ADS  Google Scholar 

  30. M.D. Perry, B.C. Stuart, P.S. Banks, M.D. Feit, V. Yanovsky, A.M. Rubenchik, J. Appl. Phys. 85, 6803 (1999)

    Article  ADS  Google Scholar 

  31. G. Tani, L. Orazi, A. Fortunato, G. Cuccolini, J. Manuf. Sci. Eng. Trans. ASME 130, 0311111 (2008)

    Article  Google Scholar 

  32. B. Rethfeld, A. Kaiser, M. Vicanek, G. Simon, Phys. Rev. B Condens. Matter Mater. Phys. 65, 2143031 (2002)

    Google Scholar 

Download references

Acknowledgements

This study did not receive any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Hak Cho.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, YG., Choi, J. & Cho, SH. Fine ablation with depth control of 25-nm resolution and morphologies irradiated by femtosecond laser pulses via beam shaping. Appl. Phys. A 129, 534 (2023). https://doi.org/10.1007/s00339-023-06799-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06799-4

Keywords

Navigation