Skip to main content
Log in

Effect of acidic treatment on DSSC performance of TiO2 nanostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of the acidic treatment on the photovoltaic properties of the dye-sensitized solar cell (DSSC) were investigated. TiO2 nanostructure was prepared by chemical bath deposition method and the surface was modified by various acidic treatments like hydrochloric acid (HCl), nitric acid (HNO3), sulphuric acid (H2SO4), and acetic acid (CH3COOH). The results exhibited a significant influence of acidic treatments on structural, morphological, optical, electrochemical, and photovoltaic properties. XRD analysis confirms the formation TiO2 nanostructure electrodes. After acidic surface treatment photoconversion efficiency increases from 1.97% (for pristine electrode) to 3.23% (for acetic acid surface treatment). With respect to that electron lifetime increased from 0.34 to 0.54 ms and charge transfer resistance decreased from 25.76 Ω cm (pristine TiO2 electrode) to 17.96 Ω cm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data which is required to supporting finding of this study is present in article.

References

  1. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)

    Google Scholar 

  2. F. Guo, B.K. Narukullapati, K.J. Mohammed, U.S. Altimari, A.M. Abed, Z. Yan, N. Ahmad, N.K.A. Dwijendra, R. Sivaraman, A.H. Abdulkadhim, Sol. Energy 243, 62 (2022)

    ADS  Google Scholar 

  3. J. Kwon, M.J. Im, C.U. Kim, S.H. Won, S.B. Kang, S.H. Kang, I.T. Choi, H.K. Kim, I.H. Kim, J.H. Park, K.J. Choi, Energy Environ. Sci. 9, 3657 (2016)

    Google Scholar 

  4. G.J. Meyer, Inorg. Chem. 44, 6852 (2005)

    Google Scholar 

  5. K.W.J. Barnham, M. Mazzer, B. Clive, Nat. Mater. 5, 161 (2006)

    ADS  Google Scholar 

  6. H.-P. Jen, M.-H. Lin, L.-L. Li, H.-P. Wu, W.-K. Huang, P.-J. Cheng, E.W.-G. Diau, A.C.S. Appl, Mater. Interfaces 5, 10098 (2013)

    Google Scholar 

  7. N. Mariotti, M. Bonomo, L. Fagiolari, N. Barbero, C. Gerbaldi, F. Bella, C. Barolo, Green Chem. 22, 7168 (2020)

    Google Scholar 

  8. S. Shogh, R. Mohammad pour, A. Iraji zad, N. Taghavinia, Mater. Res. Bull. 72, 64 (2015)

    Google Scholar 

  9. N.S. Lewis, Science 315, 798 (2007)

    ADS  Google Scholar 

  10. M. Grätzel, Inorg. Chem. 44, 6841 (2005)

    Google Scholar 

  11. K.J. Klunder, C.M. Elliott, C.S. Henry, J. Mater. Chem. A 6, 2767 (2018)

    Google Scholar 

  12. Z. Ning, Y. Fu, H. Tian, Energy Environ. Sci. 3, 1170 (2010)

    Google Scholar 

  13. A. Gopalraman, S. Karuppuchamy, S. Vijayaraghavan, RSC Adv. 9, 40292 (2019)

    ADS  Google Scholar 

  14. H.J. Snaith, Adv. Funct. Mater. 20, 13 (2010)

    Google Scholar 

  15. A.J. Frank, N. Kopidakis, J.V. De Lagemaat, Coord. Chem. Rev. 248, 1165 (2004)

    Google Scholar 

  16. K. Kakiage, Y. Aoyama, T. Yano, K. Oya, J. Fujisawab, M. Hanaya, Chem. Commun. 51, 15894 (2015)

    Google Scholar 

  17. A.A. Madhavan, S. Kalluri, D.K. Chacko, T.A. Arun, S. Nagarajan, K.R.V. Subramanian, A.S. Nair, S.V. Nair, A. Balakrishnan, RSC Adv. 2, 13032 (2012)

    ADS  Google Scholar 

  18. T. Mishra, Catal. Commun. 9, 21 (2008)

    Google Scholar 

  19. K.K. Tehare, S.S. Bhande, S.U. Mutkule, F.J. Stadler, J.P. Ao, R.S. Mane, X. Liu, J. Alloys Compd. 704, 187 (2017)

    Google Scholar 

  20. B. Roose, S.K. Pathak, U. Steiner, Chem. Soc. Rev. 44, 8326 (2015)

    Google Scholar 

  21. M. Vafaei, M.R. Mohammadi, New J. Chem. 41, 14516 (2017)

    Google Scholar 

  22. R.T. Bento, O.V. Correa, R.A. Antunes, M.F. Pillis, Mater. Res. Bull. 143, 111460 (2021)

    Google Scholar 

  23. Y. Lin, H. Zhu, Z. Jiang, Y. Zhao, Q. Wang, R. Zhang, S.H. Lin, J. Alloys Compd. 794, 35 (2019)

    Google Scholar 

  24. Q. Wen, J. Yu, X. Sun, J. Zhuang, Q. He, X. You, J. Guo, L. Tao, New J. Chem. 40, 3233 (2016)

    Google Scholar 

  25. I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, J. Fraxedas, G.A. Battiston, R. Gerbasi, A. Figueras, Adv. Mater. 14, 1399 (2002)

    Google Scholar 

  26. I. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, J. Mol. Catal. A 161, 205 (2000)

    Google Scholar 

  27. J. Maa, S. Qingfeng, Z. Fengbao, W. Mingxing, Mater. Res. Bull. 100, 213 (2018)

    Google Scholar 

  28. S. Taha, S. Begum, V.N. Narwade, D.I. Halge, J.W. Dadge, M.P. Mahabole, R.S. Khairnar, K.A. Bogle, Appl. Phys. A 127, 514 (2021)

    ADS  Google Scholar 

  29. S.M. Amir-Al Zumahi, N. Arobi, M.M. Rahman, Md.K. Hossain, M.A.J. Rozy, M.S. Bashar, A. Amri, H. Kabir, Md. Abul Hossain, F. Ahmed, Sol. Energy 225, 129 (2021)

    ADS  Google Scholar 

  30. T. Taguchi, X. Zhang, I. Sutanto, K. Tokuhiro, T.N. Rao, H. Watanabe, T. Nakamori, M. Uragami, A. Fujishima, Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. Chem. Commun. 9, 2480 (2003)

    Google Scholar 

  31. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S.M. Zakeeruddin, A. Kay, M.K. Nazeeruddin, M. Grätzel, Chem. Commun. 34, 4351 (2005)

    Google Scholar 

  32. B. O’Regan, J.R. Durrant, P.M. Sommeling, N.J. Bakker, J. Phys. Chem. C 111, 14001 (2007)

    Google Scholar 

  33. T. Raguram, K.S. Rajni, Int. J. Hydrog. Energy 47, 4674 (2022)

    Google Scholar 

  34. S. Taha, S. Begum, V.N. Narwade, D.I. Halge, J.W. Dadge, M.P. Mahabole, R.S. Khairnar, K.A. Bogle, Macromol. Symp. 400, 1 (2021)

    Google Scholar 

  35. S. Taha, S. Begum, V.N. Narwade, D. Halge, J.W. Dadge, M.P. Mahabole, R.S. Khairnar, K.A. Bogle, AIP Conf. Proc. 2220, 020195 (2020)

    Google Scholar 

  36. K.D. More, D.I. Halge, P.M. Khanzode, V.N. Narwade, S. Begum, S.G. Munde, J.W. Dadge, A.S. Rana, K.A. Bogle, AIP Conf. Proc. 2269, 030066 (2020)

    Google Scholar 

  37. B. O’Regan, L. Xiaoe, T. Ghaddar, Energy Environ. Sci. 5, 720 (2012)

    Google Scholar 

  38. M.S. Ahmad, A.K. Pandey, N.A. Rahim, Renew. Sustain. Energy Rev. 77, 89 (2017)

    Google Scholar 

  39. O.O. Ogunsolu, I.A. Murphy, J.C. Wang, A. Das, K. Hanson, A.C.S. Appl, Mater. Interfaces 8, 28633 (2016)

    Google Scholar 

  40. J. Linnemann, J. Giorgio, K. Wagner, G. Mathieson, G.G. Wallace, D.L. Officer, J. Mater. Chem. A 3, 3266 (2015)

    Google Scholar 

  41. S. Yahav, S. Rühle, S. Greenwald, H.-N. Barad, M. Shalom, A. Zaban, J. Phys. Chem. C 115, 21481 (2011)

    Google Scholar 

  42. K.K. Tehare, M.K. Zate, S.S. Bhande, S.A. Patil, S.L. Gaikwad, S.J. Yoon, R.S. Mane, S.-H. Lee, S.H. Han, J. Mater. Chem. A 2, 478 (2014)

    Google Scholar 

  43. S.S. Bhande, D.V. Shinde, K.K. Tehare, S.A. Patil, R.S. Mane, M. Naushad, Z.A. Alothman, K.N. Hui, S.-H. Han, J. Photochem. Photobiol. A Chem. 295, 64 (2014)

    Google Scholar 

  44. S.A. Patil, D.V. Shinde, D.Y. Ahn, D.V. Patil, K.K. Tehare, V.V. Jadhav, J.K. Lee, R.S. Mane, N.K. Shrestha, S.-H. Han, J. Mater. Chem. A 2, 13519 (2014)

    Google Scholar 

  45. S.T. Navale, K.K. Tehare, S.F. Shaikh, V.B. Patil, B.N. Pawar, M. Naushad, R.S. Mane, F.J. Stadler, Mater. Lett. 173, 9 (2016)

    Google Scholar 

  46. K.K. Tehare, S.T. Navale, F.J. Stadler, Z. He, H. Yang, X. Xiong, R.S. Mane, X. Liu, Mater. Res. Bull. 99, 491 (2018)

    Google Scholar 

  47. K.K. Tehare, S.S. Bhande, S.U. Mutkule, F.J. Stadler, R.S. Mane, X. Liu, J. Alloys Compd. 704, 187 (2017)

    Google Scholar 

  48. V.S. Jadhav, S.S. Bhande, K.K. Tehare, S.L. Gaikwad, R.S. Mane, Int. J. Eng. Sci. 4, 30 (2015)

    Google Scholar 

  49. S.S.B. Pankaj, A. Chalikwar, K.K. Tehare, J. Emerg. Technol. Innov. Res. 6, 1385 (2019)

    Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, KKT; methodology, KKT, PKB, SSB and STN; software, KKT and STN; validation KKT and PKB; formal analysis; investigation, KKT, SSB, and STN; resources, KKT, PKB, SSB and STN; writing—original draft preparation, KKT; writing—review and editing, SSB, PKB and STN. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kailas K. Tehare.

Ethics declarations

Conflict of interest

The author declares no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehare, K.K., Bhadke, P.K., Bhande, S.S. et al. Effect of acidic treatment on DSSC performance of TiO2 nanostructures. Appl. Phys. A 129, 413 (2023). https://doi.org/10.1007/s00339-023-06693-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06693-z

Keywords

Navigation