Skip to main content
Log in

Noticeable gas sensing properties of ZnO nano-crystallites using two-step preparation technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO thin films were made to grow on soda lime glass substrate through a two-step technique. The successive ionic layer adsorption and reaction method (SILAR) at room temperature was employed by varying the number of SILAR cycles from 50 to 125 in steps of 25 on a ZnO seed layer deposited through nebulizer assisted spray pyrolysis technique (NSP). The characteristics of the two-step deposited films were studied with a quest for improvement when compared to ZnO thin films prepared through single step chemical processing techniques. All the prepared films are observed to be polycrystalline, with hexagonal crystal structure and preferential orientation of grains along (002) direction as per XRD analysis. The size of the crystallites grown along the (002) plane seems to increase with the number of dip cycles, reaching a maximum at 100 dip cycles. Furthermore increase in the film thickness causes the crystallite size to decrease. The 940 nm thick film had the lowest strain and dislocation density values, affirmed through structural characteristics. The surface morphology of the two-step processed ZnO thin films is observed to change with the film thickness as evidenced from HRSEM observations. The average elemental percentage ratio of Zn and O atoms in the deposited ZnO films was estimated using EDAX. Optical tests show a decrement in the band gap energy from 3.30 to 2.80 eV as the dip cycle is varied. The film with better characteristic properties is used to detect the presence of ammonia gas. This study shows that there is a definite variation in the ammonia detecting capability of the gas sensor when the active layer is produced through suggested two-step process. According to the impedance spectroscopy investigation, the grain boundary resistance reduces as ammonia concentration rises up to 250 ppm, with a maximum response observed for the film deposited with 100 dip cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

The data that support the findings of this study are available from the authors on reasonable request

References

  1. K. Liu, M. Sakurai, M. Aono, ZnO-based ultraviolet photo detectors. Sensors 10(9), 8604–8634 (2010). https://doi.org/10.3390/s100908604

    Article  ADS  Google Scholar 

  2. K. Ravichandran, A. Manivasaham, K. Subha, A. Chandrabose, R. Mariappan, Cost effective nebulizer sprayed ZnO thin films for enhanced ammonia gas sensing-effect of deposition temperature. Surf. Interfaces 1–3, 13–20 (2016). https://doi.org/10.1016/j.surfin.2016.06.004

    Article  Google Scholar 

  3. N.K. Sidhu, A.C. Rastogi, Vertically aligned ZnO nanorod core-polypyrrole conducting polymer sheath and nanotube arrays for electrochemical supercapacitor energy storage. Nano Scale Res. Lett. 9(1), 453 (2014). https://doi.org/10.1186/1556-276X-9-453

    Article  ADS  Google Scholar 

  4. B. Timmer, W. Olthuis, A. Van Den Berg, Ammonia sensors and their applications—a review. Sens. Actuators B Chem. 107, 666–677 (2005). https://doi.org/10.1016/j.snb.2004.11.054

    Article  Google Scholar 

  5. S.G. Sazhin, E.I. Soborover, S.V. Tokarev, Sensor methods of ammonia inspection. Russ. J. Non Destruct. Test 39, 791–806 (2003). https://doi.org/10.1023/B:RUNT.0000020251.56686.a5

    Article  Google Scholar 

  6. J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008). https://doi.org/10.1038/ngeo325

    Article  ADS  Google Scholar 

  7. Y. Alarie, Dose–response analysis in animal studies: prediction of human responses. Environ. Health Perspect. 42, 9–13 (1981). https://doi.org/10.1289/ehp.81429

    Article  Google Scholar 

  8. K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranontb, S. Phanichphant, Semiconducting metal oxides as sensors for environmentally hazardous gases. Sens. Actuators B 160, 580–591 (2011). https://doi.org/10.1016/j.snb.2011.08.032

    Article  Google Scholar 

  9. Y.-F. Sun, S.-B. Liu, F.-L. Meng, J.-Y. Liu, Z. Jin, L.-T. Kong, Metal oxide nano structures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  ADS  Google Scholar 

  10. C. Cachoncinlle, C. Hebert, J. Perriere, M. Nistor, A. Petit, E. Millon, Random lasing of ZnO thin films grown by pulsed-laser deposition. Appl. Surf. Sci. 336, 103–119 (2015). https://doi.org/10.1016/j.apsusc.2014.09.186

    Article  ADS  Google Scholar 

  11. F.H. Wang, C.L. Chang, Effect of substrate temperature on transparent conducting Al and F co-doped ZnO thin films prepared by rf magnetron sputtering. Appl. Surf. Sci. 370, 83–91 (2016). https://doi.org/10.1016/j.apsusc.2016.02.161

    Article  ADS  Google Scholar 

  12. P. Samadipakchin, H.R. Mortaheb, A. Zolfaghari, ZnO nanotubes: preparation and photocatalytic performance evaluation. J. Photochem. Photobiol. A 337, 91–99 (2017). https://doi.org/10.1016/j.jphotochem.2017.01.018

    Article  Google Scholar 

  13. Y. Qu, T.A. Gessert, T.J. Coutts, R. Naufi, Study of ion beam-sputtered, ZnO films as a function of deposition temperature. J. Vac. Sci. Technol. 12, 1507–1512 (1994). https://doi.org/10.1116/1.579346

    Article  Google Scholar 

  14. Y. Dali, H. Ming, L. Shenyu, L. Jiran, W. Yaqiao, M. Shangyun, Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim. Acta 115, 297–305 (2014). https://doi.org/10.1016/j.electacta.2013.10.007

    Article  Google Scholar 

  15. Y.H. Navale, S.T. Navale, F.J. Stadler, N.S. Ramgir, V.B. Patil, Thermally evaporated copper oxide films: a view of annealing effect on physical and gas sensing properties. Ceram. Int. 43, 7057–7064 (2017). https://doi.org/10.1016/j.ceramint.2017.02.135

    Article  Google Scholar 

  16. J. Hu, R.G. Gordon, Textured aluminum-doped zinc oxide thin films from atmospheric pressure chemical-vapor deposition. J. Appl. Phys. 71, 880–890 (1992). https://doi.org/10.1063/1.351309

    Article  ADS  Google Scholar 

  17. K. Muthukrishnan, M. Vanaraja, S. Boomadevi, R.K. Karn, K. Pandiya, Studies on acetone sensing characteristics of ZnO thin film prepared by sol–gel dip coating. J. Alloys Compd. 673, 138–143 (2016). https://doi.org/10.1016/j.jallcom.2016.02.222

    Article  Google Scholar 

  18. V.G. Krishnan, P. Elango, Influence of Ba doping concentration on the physical properties and gas sensing performance of ZnO nanocrystalline films: automated nebulizer spray pyrolysis (ANSP) method. Optik 141, 83–89 (2017). https://doi.org/10.1016/j.ijleo.2017.05.045

    Article  ADS  Google Scholar 

  19. I. Muniyandi, G.K. Mani, P. Shankar, J.B.B. Rayappann, Effect of nickel doping on structural, optical, electrical and ethanol sensing properties of spray deposited nano structured ZnO thin films. Ceram. Int. 40, 7993–8001 (2014). https://doi.org/10.1016/j.ceramint.2013.12.150

    Article  Google Scholar 

  20. R. Mariappan, V. Ponnuswamy, R. Suresh, P. Suresh, A. Chandra Bose, M. Ragavendar, Role of substrate temperature on the properties of Na-doped ZnO thin film nanorods and performance of ammonia gas sensors using nebulizer spray pyrolysis technique. J. Alloys Compd. 582, 387–391 (2014). https://doi.org/10.1016/j.jallcom.2013.08.048

    Article  Google Scholar 

  21. V.L. Patil, S.A. Vanalakar, P.S. Patil, J.H. Kim, Fabrication of nano structured ZnO thin films based NO2 gas sensor via SILAR technique. Sens. Actuators B 239, 1185–1193 (2017). https://doi.org/10.1016/j.snb.2016.08.130

    Article  Google Scholar 

  22. A.C. Nwanya, P.R. Deshmukh, R.U. Osuji, M. Maaza, C.D. Lokhande, F.I. Ezema, Synthesis, characterization and gas-sensing properties of SILAR deposited ZnO–CdO nano-composite thin film. Sens. Actuators B 206, 671–678 (2015). https://doi.org/10.1016/j.snb.2014.09.111

    Article  Google Scholar 

  23. T. Çorlu, I. Karaduman, S. Galioglu, B. Akata, M.A. Yıldırım, A. Ateş, S. Acar, Low level no gas sensing properties Of Cu doped Zno thin films prepared by Silar method. Mater. Lett. 212, 292–295 (2012). https://doi.org/10.1016/j.matlet.2017.10.121

    Article  Google Scholar 

  24. M.P. Suryawanshi, S.W. Shin, U.V. Ghorpade, K.V. Gurav, C.W. Hong, G.L. Agawane, S.A. Vanalakar, J.H. Moon, J.H. Yun, P.S. Patil, J.H. Kim, A.V. Moholkar, Improved photoelectrochemical performance of Cu2ZnSnS4 (CZTS) thin films prepared using modified successive ionic layer adsorption and reaction (SILAR) sequence. Electrochim. Acta 150, 136–145 (2014). https://doi.org/10.1016/j.electacta.2014.10.124

    Article  Google Scholar 

  25. A. Tricoli, M. Righettoni, A. Teleki, Semiconductor gas sensors: dry synthesis and application. Angew. Chem. Int. Ed. 49, 7632–7659 (2010). https://doi.org/10.1002/anie.200903801

    Article  Google Scholar 

  26. X. Wang, F. Sun, Y. Duan, Z. Yin, W. Luo, Y.A. Huang, J. Chen, Highly sensitive, temperature-dependent gas sensor based on hierarchical ZnO nanorod arrays. J. Mater. Chem. C 3, 11397–21140 (2015). https://doi.org/10.1039/C5TC02187A

    Article  Google Scholar 

  27. Y. Morinaga, K. Sakuragi, N. Fujimura, T. Ito, Effect of Ce doping on the growth of ZnO thin films. J. Cryst. Growth 174, 691–695 (1997). https://doi.org/10.1016/S0022-0248(97)00045-6

    Article  ADS  Google Scholar 

  28. A. Raidou, F. Benmalek, T. Sall, M. Aggour, A. Qachaou, L. Laanab, M. Fahoume, The influence of rinsing period on the structural and optical properties of ZnO thin films. Opt. Quant Electron. 46, 171–178 (2014). https://doi.org/10.1007/s11082-013-9737-6

    Article  Google Scholar 

  29. K.P. Misra, R.K. Shukla, A. Srivastava, A. Srivastava, Blue shift in optical band gap in nano crystalline Zn1xCaxO films deposited by sol-gel method. Appl. Phys. Lett. 95, 31901 (2009). https://doi.org/10.1063/1.3184789

    Article  Google Scholar 

  30. S.B. Jambure, S.J. Patil, A.R. Deshpande, C.D. Lokhande, A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films. Mater. Res. Bull. 49, 420–425 (2014). https://doi.org/10.1016/j.materresbull.2013.09.007

    Article  Google Scholar 

  31. R. Mariappan, M. Ragavendar, V. Ponnuswamy, Growth and characterization of chemical bath deposited Cd1-xZnxS thin films. J. Alloys Compd. 509, 7337–7343 (2011). https://doi.org/10.1016/j.jallcom.2011.04.088

    Article  Google Scholar 

  32. M. Balaji, J. Chandrasekaran, M. Raja, Mater. Sci. Semicond. Process. 43, 104 (2016). https://doi.org/10.1016/j.mssp.2015.12.009

    Article  Google Scholar 

  33. D. Iskenderoglu, H. Guney, M.E. Gulduren, A comprehensive study on SILAR grown on cobalt doped CdO. Optik 254, 168658 (2022)

    Article  ADS  Google Scholar 

  34. G. Yergaliuly, B. Soltabayev, S. Kalybekkyzy, Z. Bakenov, A. Mentbayeva, Effect of thickness and reaction media on properties of ZnO thin films by SILAR. Sci Rep 12, 851 (2022). https://doi.org/10.1038/s41598-022-04782-2

    Article  ADS  Google Scholar 

  35. B.C. Ghos, S.F.U. Farhad, M.A.M. Patwary, S. Majumder, M.A. Hossain, N.I. Tanvir, M.A. Rahman, T. Tanaka, Q. Guo, Influence of the substrate, process conditions, and postannealing temperature on the properties of ZnO thin films grown by the successive ionic layer adsorption and reaction method. ACS Omega 6(4), 2665–2674 (2021). https://doi.org/10.1021/acsomega.0c04837

    Article  Google Scholar 

  36. R. Bhargava, P.K. Sharma, S. Kumar, A.C. Pandey, N. Kumar, Consequence of doping mediated strain and the activation energy on the structural and optical properties of ZnO: Cr nanoparticles. J. Solid State Chem. 183, 1400–1408 (2010). https://doi.org/10.1016/j.jssc.2010.04.014

    Article  ADS  Google Scholar 

  37. R. Nisha, K.N. Madhusoodanan, T.V. Vimalkumar, K.P. Vijayakumar, Gas sensing application of nanocrystalline zinc oxide thin films prepared by spray pyrolysis. Bull. Mater. Sci. 38(3), 583–591 (2015). https://doi.org/10.1007/s12034-015-0911-2

    Article  Google Scholar 

  38. M. Heshmat, H. Abdizadeh, M.R. Golobostanfard, Sonochemical assisted synthesis of ZnO nanostructured thin films prepared by sol-gel method. Procedia Mater. Sci. 11, 486–490 (2015). https://doi.org/10.1016/j.mspro.2015.11.070

    Article  Google Scholar 

  39. C. Jayachandraiah, G. Krishnaiah, Erbium induced Raman studies and dielectric properties of Er-doped ZnO nanoparticles. Adv. Mater. Lett. 6(8), 743–748 (2015). https://doi.org/10.5185/amlett.2015.5801

    Article  Google Scholar 

  40. S. Bouhouche, F. Bensouici, M. Toubane, A. Azizi, A. Otmani, K. Chebout, F. Kezzoula, R. Tala-Ighil, M. Bououdina, Effect of Er3þ doping on structural, morphological and photocatalytical properties of ZnO thin films. Mater. Res. Express 5, 056407 (2018). https://doi.org/10.1088/2053-1591/aac4e8

    Article  ADS  Google Scholar 

  41. A. Hastir, N. Kohli, R.C. Singh, Comparative study on gas sensing properties of rare earth (Tb, Dy and Er) doped ZnO sensor. J. Phys. Chem. Solid. 105, 23–34 (2017). https://doi.org/10.1016/j.jpcs.2017.02.004

    Article  ADS  Google Scholar 

  42. M. Dehimi, T. Touam, A. Chelouche, F. Boudjouan, D. Djouadi, J. Solard, A. Fischer, A. Boudrioua, A. Doghmane, Effects of low Ag doping on physical and optical waveguide properties of highly oriented sol-gel ZnO thin films. Adv. Condens. Matter Phys. 2015(74028), 1–10 (2015). https://doi.org/10.1155/2015/740208

    Article  Google Scholar 

  43. K. Ravichandran, R. Mohan, N.J. Begum, S. Snega, K. Swaminathan, C. Ravidhas, B. Sakthivel, S. Varadharajaperumal, Impact of spray flux density and vacuum annealing on the transparent conducting properties of doubly doped (Sn þ F) zinc oxide films deposited using a simplified spray technique. Vacuum 107, 68–76 (2014). https://doi.org/10.1016/j.vacuum.2014.03.029

    Article  ADS  Google Scholar 

  44. K. Deva, A. Kumar, S. Valanarasu, J.S. Ponraj, B.J. Fernandes, M. Shkir, S. AlFaify, P. Murahari, K. Ramesh, Effect of Er doping on the ammonia sensing properties of ZnO thin films prepared by a nebulizer spray technique. J. Phys. Chem. Solids 144, 109513 (2020). https://doi.org/10.1016/j.jpcs.2020.109513

    Article  Google Scholar 

  45. K. Shingange, Z.P. Tshabalala, O.M. Ntwaeaborwa, D.E. Motaung, G.H. Mhlongo, Highly selective NH3 gas sensor based on Au loaded ZnO nanostructures prepared using microwave-as sisted method. J. Colloid Interface Sci. 479, 127–138 (2016). https://doi.org/10.1016/j.jcis.2016.06.046

    Article  ADS  Google Scholar 

  46. M.R. Alenezi, A.S. Alshammari, K.D.G.I. Jayawardena, M.J. Beliatis, S.J. Henley, S.R.P. Silva, Role of the exposed polar facets in the performance of thermally and UV activated ZnO nanostructured gas sensors. J. Phys. Chem. C 117, 17850–17858 (2013). https://doi.org/10.1021/jp4061895

    Article  Google Scholar 

  47. K.R. Devi, G. Selvan, M. Karunakaran, K. Kasirajan, L.B. Chandrasekar, M. Shkir, AlFaify S SILAR-coated Mg-doped ZnO thin films for ammonia vapor sensing applications. J. Mater. Sci. Mater. Electron. 31, 10186–10195 (2020). https://doi.org/10.1007/s10854-020-03564-8

    Article  Google Scholar 

  48. J. Huang, D. Jiang, J. Zhou, J. Ye, Y. Sun, X. Li, Y. Geng, J. Wang, Y. Du, Z. Qian, Visible light-activated room temperature NH3 sensor base on CuPc-loaded ZnO nanorods. Sens. Actuators B Chem. 327, 128911 (2021). https://doi.org/10.1016/j.snb.2020.128911

    Article  Google Scholar 

  49. L.H. Kathwate, G. Umadevi, P.M. Kulal, P. Nagaraju, D.P. Dubal, A.K. Nanjundan, V.D. Mote, Ammonia gas sensing properties of Al doped ZnO thin films. Sens. Actuators A Phys. 313, 112193 (2020). https://doi.org/10.1016/j.sna.2020.112193

    Article  Google Scholar 

  50. G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin film. Appl. Surf. Sci. 311, 405–412 (2014). https://doi.org/10.1016/j.apsusc.2014.05.075

    Article  ADS  Google Scholar 

  51. G.K. Mani, J.B.B. Rayappan, A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens. Actuators B Chem. 183, 459–466 (2013). https://doi.org/10.1016/j.snb.2013.03.132

    Article  Google Scholar 

  52. G.K. Mani, J.B.B. Rayappan, Novel and facile synthesis of randomly interconnected ZnO nano platelets using spray pyrolysis and their room temperature sensing characteristics. Sens. Actuators B Chem. 198, 125–133 (2014). https://doi.org/10.1016/j.snb.2014.02.101

    Article  Google Scholar 

  53. I.L. Poul Raj, S. Gobalakrishnan, P.K. Praseetha, N. Chidhambaram, S. Saravanakumar, V. Ganesh, S. AlFaify, H. Algarni, I.S. Yahia, Improved ammonia vapor sensing properties of Al-doped ZnO nanoparticles prepared by sol-gel process. Phys. Scr. 96, 85802 (2021). https://doi.org/10.1088/1402-4896/abfb22

    Article  Google Scholar 

  54. N. Rajappan, K.N. Madhusoodanan, T. Vimalkumar, K. Vijayakumar, Gas sensing application of nano crystalline zinc oxide thin films prepared by spray pyrolysis. Bull. Mater. Sci. 38, 583–591 (2015). https://doi.org/10.1007/s12034-015-0911-2

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research at KKU for funding to carry this work through the research groups program under Grant number R.G.P. 2/147/43.

Funding

.The authors extend their appreciation to the Deanship of Scientific Research at KKU for funding to carry this work through the research groups program under Grant number R.G.P. 2/147/43.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study, conception and design. Material preparation, data collection and analysis were performed by KVG, PM, RB, VG, SR and RT. The first draft of the manuscript was written by Dr. AMSA and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. The work described in the present article has not been published previously. It is not under consideration/submitted for publication elsewhere. Its publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. That, if accepted, it will not be published elsewhere including electronically in the same form, in English or in any other language, without the written consent of the copyright-holder. All authors have checked the manuscript and have agreed to the submission.

Corresponding author

Correspondence to K. V. Gunavathy.

Ethics declarations

Conflict of interest

No conflicts of interests exist between the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arulanantham, A.M.S., Gunavathy, K.V., Mohan raj, P. et al. Noticeable gas sensing properties of ZnO nano-crystallites using two-step preparation technique. Appl. Phys. A 129, 290 (2023). https://doi.org/10.1007/s00339-023-06556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06556-7

Keywords

Navigation