Skip to main content
Log in

Nanoarchitectonics of wide-bandgap perovskite films using sputtered-PbI2 precursor and ion-exchange method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Conformal deposition of wide-bandgap perovskite films along pyramidal silicon surfaces through the dry process is essential for fabricating large-area textured silicon/perovskite tandem solar cells. However, it is difficult to control the composition of mixed perovskite films through dry processes because the deposition rate in organic and inorganic components is different when depositing perovskite films using a multi-source or premixed-source. In this study, MAPbI3 perovskite films were deposited through radio-frequency magnetron sputtering and dry conversion processes, and wide-bandgap perovskite films with mixed halide compositions were prepared by immersion in a MABr/IPA solution. Based on the results, the bandgap of the perovskite films increased with the immersion time. In addition, a uniform depth profile of the perovskite composition was observed in the film. Perovskite solar cells were manufactured to verify their electrical characteristics. Finally, wide-bandgap perovskite films were conformally deposited on textured silicon surfaces. These results show the great potential of applications in silicon/perovskite tandem solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data available on request due to restrictions of privacy.

Code availability

Not applicable.

References

  1. NREL, Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 30 July 2022.

  2. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Reversible hydration of CH(3)NH(3)Pbl(3) in films, single crystals, and solar cells. Chem Mater 27(9), 3397–3407 (2015)

    Article  Google Scholar 

  3. S. Kim, S. Bae, S.W. Lee, K. Cho, K.D. Lee, H. Kim, S. Park, G. Kwon, S.W. Ahn, H.M. Lee, Y. Kang, H.S. Lee, D. Kim, Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Sci. Rep. UK 7, 1200 (2017)

    Article  ADS  Google Scholar 

  4. S.W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, L.E. Mundt, S. Lee, S. Park, H. Park, M.C. Schubert, S.W. Glunz, Y. Ko, Y. Jun, Y. Kang, H.S. Lee, D. Kim, UV degradation and recovery of perovskite solar cells. Sci. Rep. UK 6, 1–10 (2016)

    Google Scholar 

  5. X. Wang, K. Rakstys, K. Jack, H. Jin, J. Lai, H. Li, C.S.K. Ranasinghe, J. Saghaei, G.R. Zhang, P.L. Burn, I.R. Gentle, P.E. Shaw, Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of >21% and improved stability towards humidity. Nat. Commun. 12(1), 52 (2021)

    Article  ADS  Google Scholar 

  6. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Gratzel, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206–209 (2016)

    Article  ADS  Google Scholar 

  7. W.Z. Li, W. Zhang, S. Van Reenen, R.J. Sutton, J.D. Fan, A.A. Haghighirad, M.B. Johnston, L.D. Wang, H.J. Snaith, Enhanced UV-light stability of planar heterojunction perovskite solar cells with caesium bromide interface modification. Energy Environ. Sci. 9(2), 490–498 (2016)

    Article  Google Scholar 

  8. S.W. Lee, S. Kim, S. Bae, K. Cho, T. Chung, J.K. Hwang, I. Song, W. Lee, S. Park, J. Jung, J. Chun, Y.J. Lee, Y.J. Moon, H.S. Lee, D. Kim, C. Bin Mo, Y. Kang, Enhanced UV stability of perovskite solar cells with a SrO interlayer. Org. Electron. 63, 343–348 (2018)

    Article  Google Scholar 

  9. A. Al-Ashouri, E. Kohnen, B. Li, A. Magomedov, H. Hempel, P. Caprioglio, J.A. Marquez, A.B.M. Vilches, E. Kasparavicius, J.A. Smith, N. Phung, D. Menzel, M. Grischek, L. Kegelmann, D. Skroblin, C. Gollwitzer, T. Malinauskas, M. Jost, G. Matic, B. Rech, R. Schlatmann, M. Topic, L. Korte, A. Abate, B. Stannowski, D. Neher, M. Stolterfoht, T. Unold, V. Getautis, S. Albrecht, Monolithic perovskite/silicon tandem solar cell with > 29% efficiency by enhanced hole extraction. Science 370(6522), 1300 (2020)

    Article  ADS  Google Scholar 

  10. F. Sahli, J. Werner, B.A. Kamino, M. Brauninger, R. Monnard, B. Paviet-Salomon, L. Barraud, L. Ding, J.J.D. Leon, D. Sacchetto, G. Cattaneo, M. Despeisse, M. Boccard, S. Nicolay, Q. Jeangros, B. Niesen, C. Ballif, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820 (2018)

    Article  ADS  Google Scholar 

  11. L. Mao, T. Yang, H. Zhang, J.H. Shi, Y.C. Hu, P. Zeng, F.M. Li, J. Gong, X.Y. Fang, Y.Q. Sun, X.C. Liu, J.L. Du, A.J. Han, L.P. Zhang, W.Z. Liu, F.Y. Meng, X.D. Cui, Z.X. Liu, M.Z. Liu, Fully textured, production-line compatible monolithic perovskite/silicon tandem solar cells approaching 29% efficiency. Adv. Mater. 34, 2206193 (2022)

    Article  Google Scholar 

  12. M. Ross, S. Severin, M.B. Stutz, P. Wagner, H. Kobler, M. Favin-Leveque, A. Al-Ashouri, P. Korb, P. Tockhorn, A. Abate, B. Stannowski, B. Rech, S. Albrecht, Co-evaporated formamidinium lead iodide based perovskites with 1000 h constant stability for fully textured monolithic perovskite/silicon tandem solar cells. Adv Energy Mater. 11(35), 2101460 (2021)

    Article  Google Scholar 

  13. J.Y. Hyun, K.M. Yeom, S.W. Lee, S. Bae, D. Choi, H. Song, D. Kang, J.K. Hwang, W. Lee, S. Lee, Y. Kang, H.S. Lee, J.H. Noh, D. Kim, Perovskite/silicon tandem solar cells with a V-oc of 1784 mV based on an industrially feasible 25 cm(2) TOPCon silicon cell. Acs Appl. Energy Mater. 5(5), 5449–5456 (2022)

    Article  Google Scholar 

  14. L. Protesescu, S. Yakunin, M.I. Bodnarchuk, F. Krieg, R. Caputo, C.H. Hendon, R.X. Yang, A. Walsh, M.V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15(6), 3692–3696 (2015)

    Article  ADS  Google Scholar 

  15. D.P. McMeekin, G. Sadoughi, W. Rehman, G.E. Eperon, M. Saliba, M.T. Horantner, A. Haghighirad, N. Sakai, L. Korte, B. Rech, M.B. Johnston, L.M. Herz, H.J. Snaith, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351(6269), 151–155 (2016)

    Article  ADS  Google Scholar 

  16. K. Jager, J. Sutter, M. Hammerschmidt, P.I. Schneider, C. Becker, Prospects of light management in perovskite/silicon tandem solar cells. Nanophotonics Berlin 10(8), 1991–2000 (2021)

    Article  Google Scholar 

  17. C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H.J. Bolink, Efficient vacuum deposited p-i-n and n-i-p perovskite solar cells employing doped charge transport layers. Energy Environ. Sci. 9(11), 3456–3463 (2016)

    Article  Google Scholar 

  18. L. Luo, Z.L. Ku, W.X. Li, X. Zheng, X. Li, F.Z. Huang, Y. Peng, L.M. Ding, Y.B. Cheng, 19.59% Efficiency from Rb-00.4-Cs(0.14)FA(0.86)Pb(BryI1_y)(3) perovskite solar cells made by vapor-solid reaction technique. Sci. Bull. 66(10), 962–964 (2021)

    Article  Google Scholar 

  19. M.H. Li, H.H. Yeh, Y.H. Chiang, U.S. Jeng, C.J. Su, H.W. Shiu, Y.J. Hsu, N. Kosugi, T. Ohigashi, Y.A. Chen, P.S. Shen, P. Chen, T.F. Guo, Highly efficient 2D/3D hybrid perovskite solar cells via low-pressure vapor-assisted solution process. Adv. Mater. 30(30), 1801401 (2018)

    Article  Google Scholar 

  20. Y. Jiang, M.R. Leyden, L.B. Qiu, S.H. Wang, L.K. Ono, Z.F. Wu, E.J. Juarez-Perez, Y.B. Qi, Combination of hybrid CVD and cation exchange for upscaling Cs-substituted mixed cation perovskite solar cells with high efficiency and stability. Adv. Funct. Mater. 28(1), 1703835 (2018)

    Article  Google Scholar 

  21. Z.R. Zhang, M.C. Li, W.J. Liu, X.P. Yue, P. Cui, D. Wei, CH3NH3PbI3 converted from reactive magnetron sputtered PbO for large area perovskite solar cells. Sol. Energy Mater. Sol. C 163, 250–254 (2017)

    Article  Google Scholar 

  22. I. Raifuku, Y. Ishikawa, T. Bourgeteau, Y. Bonnassieux, P.R.I. Cabarrocas, Y. Uraoka, Fabrication of perovskite solar cells using sputter-processed CH3NH3PbI3 films. Appl. Phys. Express 10(9), 094101 (2017)

    Article  ADS  Google Scholar 

  23. J.M.C. da Silva, N.F.V. Borrero, G.A. Viana, R.B. Merlo, F.C. Marques, Lead iodide thin films via rf sputtering. Cryst. Growth Des. 20(3), 1531–1537 (2020)

    Article  Google Scholar 

  24. S.W. Lee, S. Bae, J.K. Hwang, W. Lee, S. Lee, J.Y. Hyun, K. Cho, S. Kim, F.D. Heinz, S.B. Choi, D. Choi, D. Kang, J. Yang, S. Jeong, S.J. Park, M.C. Schubert, S. Glunz, W.M. Kim, Y. Kang, H.S. Lee, D. Kim, Perovskites fabricated on textured silicon surfaces for tandem solar cells. Commun. Chem. 3(1), 37 (2020)

    Article  Google Scholar 

  25. J.K. Hwang, S.W. Lee, W. Lee, S. Bae, K. Cho, S. Kim, S. Lee, J.Y. Hyun, Y. Kang, H.S. Lee, D. Kim, Conformal perovskite films on 100 cm(2) textured silicon surface using two-step vacuum process. Thin Solid Films 693, 137694 (2020)

    Article  ADS  Google Scholar 

  26. B. Gao, J. Hu, Z. Zuo, Q. Qi, Z.Y. Peng, H.L. Chen, K. Yan, S.C. Hou, D.C. Zou, Doping mechanism of perovskite films with PbCl2 prepared by magnetron sputtering for enhanced efficiency of solar cells. Acs Appl. Mater. Interface 14(35), 40062–40071 (2022)

    Article  Google Scholar 

  27. F. Fu, S. Pisoni, T.P. Weiss, T. Feurer, A. Wackerlin, P. Fuchs, S. Nishiwaki, L. Zortea, A.N. Tiwari, S. Buecheler, Compositionally graded absorber for efficient and stable near-infrared-transparent perovskite solar cells. Adv. Sci. 5(3), 1700675 (2018)

    Article  Google Scholar 

  28. W.D. Zhu, C.X. Bao, F.M. Li, T. Yu, H. Gao, Y. Yi, J. Yang, G. Fu, X.X. Zhou, Z.G. Zou, halide exchange engineering for CH(3)NH(3)Pbl(3–x)Br(x) perovskite solar cells with high performance and stability. Nano Energy 19, 17–26 (2016)

    Article  Google Scholar 

  29. J.Z. Chen, S.G. Kim, N.G. Park, FA(0.88)Cs(0.12)PbI(3–x)(PF6)(x) interlayer formed by ion exchange reaction between perovskite and hole transporting layer for improving photovoltaic performance and stability. Adv. Mater. 30(40), 1801948 (2018)

    Article  Google Scholar 

  30. T.K. Zhang, M.Z. Long, K.Y. Yan, M.C. Qin, X.H. Lu, X.L. Zeng, C.M. Cheng, K.S. Wong, P.Y. Liu, W.G. Xie, J.B. Xu, Crystallinity preservation and ion migration suppression through dual ion exchange strategy for stable mixed perovskite solar cells. Adv. Energy Mater. 7(15), 1700118 (2017)

    Article  Google Scholar 

  31. Z.Q. Ren, M.H. Zhu, X. Li, C.K. Dong, An isopropanol-assisted fabrication strategy of pinhole-free perovskite films in air for efficient and stable planar perovskite solar cells. J. Power Sour. 363, 317–326 (2017)

    Article  ADS  Google Scholar 

  32. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, S.I. Seok, Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764–1769 (2013)

    Article  ADS  Google Scholar 

  33. T. Baikie, Y.N. Fang, J.M. Kadro, M. Schreyer, F.X. Wei, S.G. Mhaisalkar, M. Graetzel, T.J. White, Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3) PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628–5641 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank JOIN SOLUTION Co. Ltd. for supporting the RF magnetron sputtering equipment.

Funding

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry and Energy, Republic of Korea (no. 20204010600470). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (no. 2022M3J1A1063226).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, J-KH; methodology, SC, WL; validation, SB; formal analysis, J-KH, SL; investigation, J-KH, S-HJ; resources, J-KH; data curation, J-KH, DP; writing—original draft preparation, J-KH, SB; writing—review and editing, J-KH; visualization, J-KH; supervision, YK; project administration, H-SL, DK; funding acquisition, KK, JG, H-SL. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Kihwan Kim or Hae-Seok Lee.

Ethics declarations

Conflict of interests

The authors declare that they have no competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors have provided their consent for publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2136 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, JK., Cho, S., Lee, W. et al. Nanoarchitectonics of wide-bandgap perovskite films using sputtered-PbI2 precursor and ion-exchange method. Appl. Phys. A 129, 260 (2023). https://doi.org/10.1007/s00339-023-06516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06516-1

Keywords

Navigation