Skip to main content

Advertisement

Log in

Effect of Plasma Immersion Ion Implantation (PIII) nitriding on austenitic stainless steel multilayer coatings

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Stainless steel coatings are widely used in abrasive and corrosive environments due to their surface properties, and also to their techno-economic impact. Stainless steel coating deposited by Twin-Wire Arc Spray (TWAS) and post-annealed at the vacuum conditions presented very interesting mechanical and corrosion properties, while their tribological behavior, i.e. friction and wear resistance needs further improvement. To enhance those properties, Plasma Immersion Ion Implantation (PIII) technique was used to nitride the coating, afterward, the coatings microstructures were surveyed using Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD) and Atomic Force Microscopy (AFM). Mechanical properties of the coatings were investigated through nanoindentation tests. The tribological properties were also evaluated. A comparison of the obtained results revealed that the hardness of the nitrided coatings could reach 16 GPa, representing a 50% increase compared to the non-nitrided stainless steel coatings. The friction coefficient showed to be 3 times lower after PIII nitriding. Moreover, the wear rate was reduced by 2 orders of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Y. Jirásková, S. Havlíček, O. Schneeweiss et al., J. Magn. Magn. Mater. 434, 477–488 (2001)

    Article  ADS  Google Scholar 

  2. J. Lutz, J.W. Gerlach, S. Mändl, Phys. Status Solidi 205, 980–984 (2008)

    Article  ADS  Google Scholar 

  3. S. Mändl, Plasma Process. Polym. 4, 239–245 (2008)

    Article  Google Scholar 

  4. M.H. Farazmand, H. Khorsand, H. Ebrahimnezhad-Khaljiri, Metallogr. Microstruct. Anal. 7, 711–723 (2018)

    Article  Google Scholar 

  5. B.C.E.S. Kurelo, W.R. DeOliveira, F.C. Serbena et al., Surf. Coat. Technol. 353, 199–209 (2018)

    Article  Google Scholar 

  6. A. Lanterne, T. Desrues, C. Lorfeuvre et al., Prog. Photovoltaics 27(12), 1081–1091 (2019)

    Article  Google Scholar 

  7. J.F. Lerat, T. Desrues, J. LePerchec et al., Enrgy Proced. 92, 697–701 (2016)

    Article  Google Scholar 

  8. S. Mukherjee, J. Chakraborty, S. Gupta et al., Surf. Coat. Technol. 156(1–3), 103–109 (2002)

    Article  Google Scholar 

  9. Y. Chen, B. Xu, Y. Liu et al., Trans. Nonferrous Metals Soc. China 18, 603–609 (2008)

    Article  Google Scholar 

  10. K. Chemaa, M. Kezrane, S. Hassani et al., J. Mater. Eng. Perform. (2022). https://doi.org/10.1007/s11665-022-06830-4

    Article  Google Scholar 

  11. K. Chemaa, M. Kezrane, S. Hassani et al., Appl. Phys. A 128(7), 1–10 (2022)

    Article  Google Scholar 

  12. K. Chemaa, S. Hassani, M. Kezrane et al., Appl. Phys. A 128(2), 1–13 (2022)

    Article  Google Scholar 

  13. M.M. Alim, N. Saoula, R. Tadjine et al., Eur. Phys. J. Appl. Phys. 75(3), 30801 (2016)

    Article  ADS  Google Scholar 

  14. M. Al-Raeei, Chem. Thermodyn. Ther. Anal. 6, 100046 (2022)

    Article  Google Scholar 

  15. P. Shukla, S. Singh, Pramana 94(1), 1–8 (2020)

    Article  Google Scholar 

  16. S.V. Adichtchev, N.V. Surovtsev, J. Phys. Condens. Matter 33(49), 495102 (2021)

    Article  Google Scholar 

  17. M. Tošić, I. Terzić, R. Gligorijević, Vac. 40, 131–134 (1990)

    Article  Google Scholar 

  18. R. Valencia, R. López-Callejas, A. Muñoz-Castro et al., Brazilian. J. Phys. 34, 1594–1597 (2004)

    Google Scholar 

  19. K. Kostov, M. Ueda, M. Lepiensky et al., Surf. Coat. Technol. 186, 204–208 (2004)

    Article  Google Scholar 

  20. J.F. Lin, K.W. Chen, C.C. Wei et al., Surf. Coat. Technol. 197, 28–38 (2005)

    Article  Google Scholar 

  21. L. Shen, N. Wang, J. Nanomater. 2011, 1–5 (2011)

    Article  Google Scholar 

  22. D. Vempaire, S. Miraglia, A. Sulpice et al., J. Magn. Magn. Mater. 272–276, E843–E844 (2004)

    Article  Google Scholar 

  23. J.C. Caicedo, L. Yate, J. Montes, Surf. Coat. Technol. 205, 2947–2953 (2011)

    Article  Google Scholar 

  24. P. Gao, S. Cao, J. Li et al., J. Alloys Compd. 684, 188–194 (2016)

    Article  Google Scholar 

  25. B. Dikici, H. Yilmazer, I. Ozdemir et al., J. Therm. Spray Technol. 25, 704–714 (2016)

    Article  ADS  Google Scholar 

  26. S. García-Rodríguez, A.J. López, B. Torres et al., Surf. Coat. Technol. 287, 9–19 (2016)

    Article  Google Scholar 

  27. S. García-Rodríguez, B. Torres, A.J. López et al., Surf. Coat. Technol. 359, 73–84 (2019)

    Article  Google Scholar 

  28. Q.Y. Wang, Y.C. Xi, Y.H. Zhao et al., Mater. Charact. 127, 239–247 (2017)

    Article  Google Scholar 

  29. X.M. Meng, J.B. Zhang, W. Han et al., Appl. Surf. Sci. 258, 700–704 (2011)

    Article  ADS  Google Scholar 

  30. M.M. Alim, R. Tadjine, A. Keffous et al., (2020) In: By A. Belasri, S.A. Beldjilali (eds) Proceedings of the 1st international conference on renewable energy and energy conversion. Springer, Singapore. p. 523

  31. M. Meyers, K. Chawla, Mechanical Behavior of Materials, 2nd edn. (Cambridge University Press, New York, 2009)

    MATH  Google Scholar 

  32. K. Chemaa, S. Hassani, M. Gaceb et al., Surf. Eng. 37, 732–738 (2020)

    Article  Google Scholar 

  33. H. Guo, S. Zhang, W. Sun et al., J. Mater. Sci. Technol. 35, 865–874 (2019)

    Article  Google Scholar 

  34. K. Chemaa, S. Hassani, M. Gaceb, J. Mater. Eng. Perform. 30, 8023–8029 (2021)

    Article  Google Scholar 

  35. L. Pranevicius, C. Templier, J.P. Rivière et al., Surf. Coat. Technol. 135(2–3), 250–257 (2001)

    Article  Google Scholar 

  36. S.Y. Sirin, E. Kaluc, Mater. Design (1980–2015) 36, 741–747 (2012)

    Article  Google Scholar 

  37. E. Song, B. Hwang, S. Lee et al., Mater. Sci. Eng. A 429, 189–195 (2006)

    Article  Google Scholar 

  38. M. Alishavandi, M.A.R. Khollari, M. Ebadi et al., J Alloy Compd. 832, 153964 (2020)

    Article  Google Scholar 

  39. F. Borgioli, E. Galvanetto, F.P. Galliano et al., Wear 260(7–8), 832–837 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The most of this work was done in the centre for the development of advanced technology (CDTA) Algiers, Algeria. The authors are grateful to the staffs of this centre. The authors are also grateful to Algérie Métallisation Company, and the Semiconductor Technology Research Centre for Energetics (CRTSE) Algiers, Algeria.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Chemaa.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chemaa, K., Hassani, S., Kezrane, M. et al. Effect of Plasma Immersion Ion Implantation (PIII) nitriding on austenitic stainless steel multilayer coatings. Appl. Phys. A 129, 149 (2023). https://doi.org/10.1007/s00339-023-06435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06435-1

Keywords

Navigation