Skip to main content
Log in

Microstructured TiO2 coatings by anodization of Ti6Al4V with oxalic acid

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Natural oxidation of Titanium allows the formation of a TiO2 coating that is known to present relevant tribological and photocatalytic properties. These aspects can be enhanced with nano-structural tailoring of the TiO2 surface, which can be achieved by electrochemical anodization. This work proposes the use of oxalic acid as an alternative for the anodization of Ti6Al4V with a lower associated risk than fluoride-based electrolytes. Specimens were anodized in an oxalic acid aqueous solution at different voltages and times. Results indicate that anodization at 30 V allows the formation of a porous and amorphous TiO2 coating with a thickness of approximately 5 μm. Increased anodization time does not seem to impact the thickness of the coating. However, it promotes the deposition of stacked-flakes structures on top of the oxide layer, attributed to the formation of titanium oxalates. Subsequent heat treatments at 500 °C for 2 h caused the crystallization of the amorphous TiO2 and the decomposition of the oxalate into TiO2, while retaining the morphology. The transformation is confirmed by Raman spectrometry and X-ray diffraction. Compared with untreated Ti6Al4V, specimens anodized for 0.5 h present an increase in microhardness of 27% and a reduction in the average coefficient of friction against 100Cr6 steel of approximately 17% after stabilization. The proposed method allows obtaining a nanostructured TiO2 coating with a fluoride-free electrolyte with properties comparable to other methods.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available in the Zenodo repository, https://doi.org/10.5281/zenodo.7155318.

References

  1. N. Lin, R. Xie, J. Zou, J. Qin, Y. Wang, S. Yuan, D. Li, L. Zhao, L. Zhang, Z. Wang, Y. Ma, P. Han, W. Tian, X. Liu, Z. Wang, B. Tang, Rev. Adv. Mater. Sci. 58, 132 (2019)

    Article  Google Scholar 

  2. B. Ercan, E. Taylor, E. Alpaslan, and T. J. Webster, Nanotechnology 22, (2011).

  3. E.P. Ivanova, V.K. Truong, J.Y. Wang, C.C. Bemdt, R.T. Jones, I.I. Yusuf, I. Peake, H.W. Schmidt, C. Fluke, D. Barnes, R.J. Crawford, Langmuir 26, 1973 (2010)

    Article  Google Scholar 

  4. S.D. Puckett, E. Taylor, T. Raimondo, T.J. Webster, Biomaterials 31, 706 (2010)

    Article  Google Scholar 

  5. T. K. Ahn, D. H. Lee, T. sup Kim, G. chol Jang, S. J. Choi, J. B. Oh, G. Ye, and S. Lee, in Adv. Exp. Med. Biol. pp. 355–368 (2018)

  6. Y. Chen, M. Xu, J. Wen, Y. Wan, Q. Zhao, X. Cao, Y. Ding, Z.L. Wang, H. Li, Z. Bian, Nat. Sustain. 4, 618 (2021)

    Article  Google Scholar 

  7. X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, H. Li, Chem Catal. 2, 1315 (2022)

    Article  Google Scholar 

  8. D.S.R. Krishna, Y. Sun, Appl. Surf. Sci. 252, 1107 (2005)

    Article  ADS  Google Scholar 

  9. D. Kaczmarek, J. Domaradzki, D. Wojcieszak, E. Prociow, M. Mazur, F. Placido, S. Lapp, J. Nano Res. 18–19, 195 (2012)

    Article  Google Scholar 

  10. M. Lorenzetti, E. Pellicer, J. Sort, M.D. Baró, J. Kovač, S. Novak, S. Kobe, Materials (Basel). 7, 180 (2014)

    Article  ADS  Google Scholar 

  11. G.H. Kim, C.G. Lee, I. Kim, Met. Mater. Int. 10, 423 (2004)

    Article  Google Scholar 

  12. D.-H. Lee, S.-Y. Choi, Met. Mater. Int. 10, 357 (2004)

    Article  Google Scholar 

  13. A.F. Cipriano, C. Miller, H. Liu, J. Biomed. Nanotechnol. 10, 2977 (2014)

    Article  Google Scholar 

  14. A. Iles and N. Pamme, in Encycl. Microfluid. Nanofluidics (Springer US, Boston, MA, 2014), pp. 1–9.

  15. C. B. Carter and M. G. Norton, Ceram. Mater. 411 (2013).

  16. D.L. Ozsvath, Rev. Environ. Sci. Biotechnol. 8, 59 (2009)

    Article  Google Scholar 

  17. P. Katiyar, N. Pandey, K.K. Sahu, Environ. Sci. Pollut. Res. 27, 13044 (2020)

    Article  Google Scholar 

  18. A. Robin, M. Bernardes de Almeida Ribeiro, J. Luiz Rosa, R. Zenhei Nakazato, and M. Borges Silva, J. Surf. Eng. Mater. Adv. Technol. 04, 123 (2014).

  19. N.K. Allam, C.A. Grimes, J. Phys. Chem. C 111, 13028 (2007)

    Article  Google Scholar 

  20. X. Chen, M. Schriver, T. Suen, S.S. Mao, Thin Solid Films 515, 8511 (2007)

    Article  ADS  Google Scholar 

  21. S. Hernández Montiel, J. Hernández Torres, L. Zamora Peredo, A. Maytorena Sánchez, C. Ferreira Palma, A. Báez Rodríguez, L. García González, Mater. Lett. 320, 132 (2022)

    Article  Google Scholar 

  22. S. Hernández Montiel, L. García González, J. Hernández Torres, L. Zamora Peredo, C. Ferreira Palma, R. Orozco Cruz, ECS Trans. 106, 171 (2022)

    Article  ADS  Google Scholar 

  23. R. W. Schutz, in ASM Handb. - Vol. 13B -Corrosion Mater. (ASM International, 2005), pp. 252–299.

  24. P. Chaudhuri, H. Diebler, J. Chem. Soc. Dalt. Trans. VIII, 596 (1977)

    Article  Google Scholar 

  25. Y. Iida, S. Ozaki, J. Am. Ceram. Soc. 44, 120 (1961)

    Article  Google Scholar 

  26. P. Niu, T. Wu, L. Wen, J. Tan, Y. Yang, S. Zheng, Y. Liang, F. Li, J.T.S. Irvine, G. Liu, X. Ma, H.M. Cheng, Adv. Mater. 30, 1 (2018)

    Google Scholar 

  27. M. Mehrjouei, S. Müller, D. Möller, J. Photochem. Photobiol. A Chem. 217, 417 (2011)

    Article  Google Scholar 

  28. W. Chen, X. Li, M. Liu, L. Li, J. Chem. Technol. Biotechnol. 92, 2862 (2017)

    Article  ADS  Google Scholar 

  29. W.C. Oliver, G.M. Pharr, J. Mater. Res. 19, 3 (2004)

    Article  ADS  Google Scholar 

  30. L. Borgese, M. Gelfi, E. Bontempi, P. Goudeau, G. Geandier, D. Thiaudière, L.E. Depero, Surf. Coatings Technol. 206, 2459 (2012)

    Article  Google Scholar 

  31. D. Nečas, P. Klapetek, Open Phys. 10, (2012).

  32. K. Aniołek, A. Barylski, M. Kupka, Materials (Basel). 14, (2021).

  33. ASTM International, ASTM G99–17, Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus (2017), pp. 1–6.

  34. J.F. Archard, W. Hirst, Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 236, 397 (1956)

    ADS  Google Scholar 

  35. E. Popova, V.L. Popov, D.E. Kim, Friction 6, 341 (2018)

    Article  Google Scholar 

  36. M.K. Kar, S. Bahadur, Wear 30, 337 (1974)

    Article  Google Scholar 

  37. T. Ohsaka, F. Izumi, Y. Fujiki, J. Raman Spectrosc. 7, 321 (1978)

    Article  ADS  Google Scholar 

  38. C. Boudaren, T. Bataille, J.P. Auffrédic, D. Louër, Solid State Sci. 5, 175 (2003)

    Article  ADS  Google Scholar 

  39. R.L. Frost, Anal. Chim. Acta 517, 207 (2004)

    Article  Google Scholar 

  40. R.A. Nyquist, Interpreting Infrared, Raman, and Nuclear Magnetic Resonance Spectra (Elsevier, Amsterdam, 2001)

    Google Scholar 

  41. T. Stergiopoulos, A. Ghicov, V. Likodimos, D. S. Tsoukleris, J. Kunze, P. Schmuki, P. Falaras, Nanotechnology 19 (2008).

  42. E. Rayón, V. Bonache, M.D. Salvador, E. Bannier, E. Sánchez, A. Denoirjean, H. Ageorges, Surf. Coatings Technol. 206, 2655 (2012)

    Article  Google Scholar 

  43. A. Bendavid, P.J. Martin, H. Takikawa, Thin Solid Films 360, 241 (2000)

    Article  ADS  Google Scholar 

  44. O. Zywitzki, T. Modes, H. Sahm, P. Frach, K. Goedicke, D. Glöß, Surf. Coatings Technol. 180–181, 538 (2004)

    Article  Google Scholar 

  45. B. Han, E.Z. Nezhad, F. Musharavati, F. Jaber, S. Bae, Coatings 8, 1 (2018)

    Article  Google Scholar 

  46. M. Sedlaček, B. Podgornik, J. Vižintin, Wear 266, 482 (2009)

    Article  Google Scholar 

  47. S. Wu, S. Wang, W. Liu, X. Yu, G. Wang, Z. Chang, D. Wen, Surf. Coatings Technol. 374, 362 (2019)

    Article  Google Scholar 

  48. M. Sarraf, E. Zalnezhad, A.R. Bushroa, A.M.S. Hamouda, A.R. Rafieerad, B. Nasiri-Tabrizi, Ceram. Int. 41, 7952 (2015)

    Article  Google Scholar 

  49. Y. Fu, A. Mo, Nanoscale Res. Lett. 13, 187 (2018)

    Article  ADS  Google Scholar 

  50. Sigma Aldrich (2022). https://www.sigmaaldrich.com/US/en/substance/ammoniumfluoride370412125018. Accesed 03 october 2022.

  51. Sigma Aldrich (2022) https://www.sigmaaldrich.com/US/en/substance/oxalicacid9003144627. Accesed 03 october 2022.

  52. H. Sawada and T. Murakami, in Kirk‐Othmer Encycl. Chem. Technol. (Wiley, 2000).

  53. C. W. Weston, J. R. Papcun, and M. Dery, in Kirk-Othmer Encycl. Chem. Technol. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 2003).

Download references

Acknowledgements

C. Ferreira-Palma thanks Consejo Nacional de Ciencia y Tecnología (CONACYT) for the postdoctoral grant received [EPM-2021]. H.J. Dorantes-Rosales thanks Instituto Politécnico Nacional (IPN-SIP-BEIFI) for their support. Special thanks to Dr. Didi Mendoza of Instituto Tecnológico de Aguascalientes for her assistance in the XRD tests. Thanks to G. González-Arenas and K.E. Martínez-Lara for their support in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ferreira-Palma.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira-Palma, C., García-González, L., Hernández-Montiel, S. et al. Microstructured TiO2 coatings by anodization of Ti6Al4V with oxalic acid. Appl. Phys. A 129, 114 (2023). https://doi.org/10.1007/s00339-023-06382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-06382-x

Keywords

Navigation