Skip to main content
Log in

Strong modulation effects on magnetoelectric behavior of Co-ferrite nanoparticles incorporated in ZnO medium in nano-regime synthesized in chemical routes

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The dielectric and piezoelectric host of ZnO nanoparticles was chosen for the incorporation of ferrimagnetic and magnetostrictive CoFe2O4 (CFO) nanoparticles to achieve magnetic and electric orderings simultaneously, under coupled conditions. Two composite samples of CFO@ZnO including the bare one, for comparison, were synthesized under different chemical reaction conditions to observe the influence of particle size on the different magneto-electric properties. The modified synthesis routes were considered due to which modified magnetoelectric behaviors were found in the samples. The particle size plays an important role in the different physical properties. Rietveld analyses of the recorded XRD patterns of all samples confirmed pure phase formation and also provide various structural information to understand the magnetoelectric behavior of these samples. Particle size obtained from this for CFO@ZnO-1 is ~ 20 nm and for CFO@ZnO-2 is ~ 10.9 nm. This size difference is also reflected in the observed FESEM and TEM micrographs. The EDAX spectra and mapping confirm the absence of impurity elements and the uniform distribution of constituent phases of composites. The dielectric properties of ZnO are substantially modified by the presence of CFO nanoparticles in each composite sample and this also depends on the size of the nanoparticles. Dielectric spectroscopy studied in the temperature range 300–425 K, provides detailed electrical properties of both composites. Both composites show enhanced dielectric constant with a very low dielectric loss along with strong magnetic properties. Magnetic investigations were performed on all samples with a maximum applied field of 3 T at different temperatures ranges with a minimum value of 10 K to a maximum value of 850 K. Ferrimagnetic behavior and Curie temperature were observed in case of CFO and CFO@ZnO-1 and presence of superparamagnetism was detected in CFO@ZnO-2. Presence of ferroelectricity was observed in composites at 300 K and 273 K. Coupling between magnetic and electric orderings generated due to magnetostriction of CFO and piezoelectricity of ZnO together with crystallographic strain originated from structural mismatch of these components. This magnetoelectric coupling was investigated through magnetocapacitance measurements, which show a high value of magnetocapacitance (~ 10%) indicating the presence of good magnetoelectric coupling. Thus, the present composite having good magnetoelectric coupling may be interesting in the family of multiferroics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to legal or ethical reasons. The author will provide the raw/processed data required to reproduce these findings if required during the revise/review process.

References

  1. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert, Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007). https://doi.org/10.1038/nmat1860

    Article  ADS  Google Scholar 

  2. K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. (2009). https://doi.org/10.1080/00018730902920554

    Article  Google Scholar 

  3. A. Moser, C.T. Rettner, M.E. Best, E.E. Fullerton, D. Weller, M. Parker, M.F. Doerner, Writing and detecting bits at 100 Gbit, in2 in longitudinal magnetic recording media. IEEE Trans. Magn. 36(5), 2137–2139 (2000). https://doi.org/10.1109/TMAG.2001.947070

    Article  ADS  Google Scholar 

  4. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, W.J. Gallagher, Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). J. Appl. Phys. (1999). https://doi.org/10.1063/1.369932

    Article  Google Scholar 

  5. T. Hibino, S. Wang, S. Kakimoto, M. Sano, One-chamber solid oxide fuel cell constructed from a YSZ electrolyte with a Ni anode and LSM cathode. Solid State Ion (2000). https://doi.org/10.1016/S0167-2738(99)00253-2

    Article  Google Scholar 

  6. S. Shevlin, Multiferroics and the path to the market. Nat. Mater. 18, 191–192 (2019). https://doi.org/10.1038/s41563-019-0295-6

    Article  Google Scholar 

  7. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008). https://doi.org/10.1063/1.2836410

    Article  ADS  Google Scholar 

  8. S. Sadhukhan, A. Mitra, A.S. Mahapatra, C.C. Dey, S. Das, P.K. Chakrabarti, Magnetoelectric multiferroicity in a newly derived nanocomposite system of (Y0.97Al0.03FeO3)x((Bi0.5Na0.5)0.94Ba0.06TiO3)(1−x) [x = 0.3, 0.5]. J. Magn. Magn. Mater. 559, 169553 (2022). https://doi.org/10.1016/j.jmmm.2022.169553

    Article  Google Scholar 

  9. M.M. Vopson, Fundamentals of multiferroic materials and their possible applications. Crit. Rev. Solid State Mater. Sci. 40, 223–250 (2015). https://doi.org/10.1080/10408436.2014.992584

    Article  ADS  Google Scholar 

  10. K.M. Zhang, Y.P. Zhao, F.Q. He, D.Q. Liu, Piezoelectricity of ZnO films prepared by sol-gel method. Chin. J. Chem. Phys. 20, 721–726 (2007). https://doi.org/10.1088/1674-0068/20/06/721-726

    Article  Google Scholar 

  11. S. Das, S. Das, A. Roychowdhury, D. Das, S. Sutradhar, Effect of Gd doping concentration and sintering temperature on structural, optical, dielectric and magnetic properties of hydrothermally synthesized ZnO nanostructure. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.216

    Article  Google Scholar 

  12. S. Das, S. Das, D. Das, S. Sutradhar, Tailoring of room temperature ferromagnetism and electrical properties in ZnO by Co (3d) and Gd (4f) element co-doping. J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2016.08.287

    Article  Google Scholar 

  13. N. Bhakta, T. Inamori, R. Shirakami, Y. Tanioku, K. Yoshimura, P.K. Chakrabarti, Room temperature magnetic ordering and analysis by bound magnetic polaron model of Yb3+ doped nanocrystalline zinc oxide (Zn0.98Yb0.02O). Mater. Res. Bull. 104, 6–14 (2018). https://doi.org/10.1016/J.MATERRESBULL.2018.03.020

    Article  Google Scholar 

  14. R.S. Turtelli, M. Kriegisch, M. Atif, R. Grössinger, Co-ferrite-A material with interesting magnetic properties. IOP Conf. Ser. Mater. Sci. Eng. (2014). https://doi.org/10.1088/1757-899X/60/1/012020

    Article  Google Scholar 

  15. M. Schaefer, G. Dietzmann, H. Wirth, Magnetic losses in ferrites and nanocrystalline ribbons for power applications. J. Magn. Magn. Mater. (1991). https://doi.org/10.1016/0304-8853(91)90689-8

    Article  Google Scholar 

  16. T. Nakamura, T. Miyamoto, Y. Yamada, Complex permeability spectra of polycrystalline Li-Zn ferrite and application to EM-wave absorber. J. Magn. Magn. Mater. (2003). https://doi.org/10.1016/S0304-8853(02)00698-4

    Article  Google Scholar 

  17. A.M. Shaikh, S.C. Watawe, S.S. Bellad, S.A. Jadhav, B.K. Chougule, Microstructural and magnetic properties of Zn substituted Li-Mg ferrites. Mater. Chem. Phys. (2000). https://doi.org/10.1016/S0254-0584(99)00238-2

    Article  Google Scholar 

  18. M.M. Hessien, Synthesis and characterization of lithium ferrite by oxalate precursor route. J. Magn. Magn. Mater. (2008). https://doi.org/10.1016/j.jmmm.2008.06.018

    Article  Google Scholar 

  19. G. Zhen, B.W. Muir, B.A. Moffat, P. Harbour, K.S. Murray, B. Moubaraki, K. Suzuki, I. Madsen, N. Agron-Olshina, L. Waddington, P. Mulvaney, P.G. Hartley, Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J. Phys. Chem. C (2011). https://doi.org/10.1021/jp104953z

    Article  Google Scholar 

  20. S. Ouaissa, A. Benyoussef, G.S. Abo, M. Ouaissa, M. Hafid, Magnetization study of cobalt ferrite by mean field approximation. Phys. Procedia 75, 792–801 (2015). https://doi.org/10.1016/j.phpro.2015.12.103

    Article  ADS  Google Scholar 

  21. S.A. Makhlouf, F. Parker, A. Berkowitz, Magnetic hysteresis anomalies in ferritin. Phys. Rev. B Condens. Matter Mater. Phys. (1997). https://doi.org/10.1103/PhysRevB.55.R14717

    Article  Google Scholar 

  22. M.F. Hansen, S. Mørup, Estimation of blocking temperatures from ZFC/FC curves. J. Magn. Magn. Mater. 203, 214–216 (1999). https://doi.org/10.1016/S0304-8853(99)00238-3

    Article  ADS  Google Scholar 

  23. A. Bandyopadhyay, A.K. Deb, S. Kobayashi, K. Yoshimura, P.K. Chakrabarti, Room temperature ferromagnetism in Fe-doped europium oxide (Eu 1.90Fe0.10O3-δ). J. Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2014.05.111

    Article  Google Scholar 

  24. W.C. Nunes, W.S.D. Folly, J.P. Sinnecker, M.A. Novak, Temperature dependence of the coercive field in single-domain particle systems. Phys. Rev. B Condens. Matter Mater. Phys. (2004). https://doi.org/10.1103/PhysRevB.70.014419

    Article  Google Scholar 

  25. D. Peddis, M.V. Mansilla, S. Mørup, C. Cannas, A. Musinu, G. Piccaluga, F.D.’ Orazio, F. Lucari, D. Fiorani, Spin-canting and magnetic anisotropy in ultrasmall CoFe2O4 nanoparticles. J. Phys. Chem. B (2008). https://doi.org/10.1021/jp8016634

    Article  Google Scholar 

  26. P.P. Vaishnava, U. Senaratne, E.C. Buc, R. Naik, V.M. Naik, G.M. Tsoi, L.E. Wenger, Magnetic properties of γ- Fe2 O3 nanoparticles incorporated in a polystyrene resin matrix. Phys. Rev. B Condens. Matter Mater. Phys. (2007). https://doi.org/10.1103/PhysRevB.76.024413

    Article  Google Scholar 

  27. A.J. Rondinone, A.C.S. Samia, Z.J. Zhang, Superparamagnetic relaxation and magnetic anisotropy energy distribution in CoFe2O4 spinel ferrite nanocrystallites. J. Phys. Chem. B (1999). https://doi.org/10.1021/jp9912307

    Article  Google Scholar 

  28. E.C. Mendonça, C.B.R. Jesus, W.S.D. Folly, C.T. Meneses, J.G.S. Duque, Size effects on the magnetic properties of ZnFe2O4 nanoparticles. J. Supercond. Nov. Magn. (2013). https://doi.org/10.1007/s10948-012-1426-3

    Article  Google Scholar 

  29. A.S. Mahapatra, K. Mukhopadhyay, M. Ghosh, P.K. Mallick, T. Matsumoto, A. Taguchi, Y. Tanioku, K. Yoshimura, P.K. Chakrabarti, Enhanced magneto-electric property and Raman spectroscopy of nanocrystalline AlxGa(1−x)FeO3 (x=0.05, 0.10 and 0.20). Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.07.064

    Article  Google Scholar 

  30. S. Sadhukhan, A.S. Mahapatra, A. Mitra, P.K. Chakrabarti, Multiferroic properties and magnetoelectric coupling observed in nanocrystalline HoFeO3. J. Alloys Compd. 907, 164443 (2022). https://doi.org/10.1016/j.jallcom.2022.164443

    Article  Google Scholar 

  31. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I Alternating current characteristics. J. Chem. Phys. (1941). https://doi.org/10.1063/1.1750906

    Article  Google Scholar 

  32. K.W. Wagner, Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen. Archiv Für Elektrotechnik 2, 371–387 (1914). https://doi.org/10.1007/BF01657322

    Article  Google Scholar 

  33. A. Schönhals, F. Kremer, Analysis of dielectric spectra, broadband dielectric. Spectroscopy (2003). https://doi.org/10.1007/978-3-642-56120-7_3

    Article  Google Scholar 

  34. P. Lunkenheimer, V. Bobnar, V. Bobnar, Av. Pronin, A.I. Ritus, A.A. Volkov, A. Loidl, Origin of apparent colossal dielectric constants. Phys. Rev. B Condens. Matter Mater. Phys. (2002). https://doi.org/10.1103/PhysRevB.66.052105

    Article  Google Scholar 

  35. S. Das, S. Das, S. Sutradhar, Effect of Gd 3+ and Al 3+ on optical and dielectric properties of ZnO nanoparticle prepared by two-step hydrothermal method. Ceram. Int. (2017). https://doi.org/10.1016/j.ceramint.2017.02.116

    Article  Google Scholar 

  36. K. Mukhopadhyay, A.S. Mahapatra, P.K. Chakrabarti, Enhanced magneto-electric property of GaFeO3 in Ga (1–x)ZnxFeO3 (x=0, 0.05, 0.10). Phys. B Condens. Matter (2014). https://doi.org/10.1016/j.physb.2014.03.053

    Article  Google Scholar 

  37. A.S. Mahapatra, P.K. Chakrabarti, Enhanced magnetic and ferroelectric properties of La 0.9 Tb 0.1 FeO 3. Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 240, 140–146 (2019). https://doi.org/10.1016/j.mseb.2019.01.018

    Article  Google Scholar 

  38. R.W. McCallum, K.W. Dennis, D.C. Jiles, J.E. Snyder, Y.H. Chen, Composite magnetostrictive materials for advanced automotive magnetomechanical sensors. Low Temp. Phys. (2001). https://doi.org/10.1063/1.1365598

    Article  Google Scholar 

  39. Y. Chen, J.E. Snyder, C.R. Schwichtenberg, K.W. Dennis, D.K. Falzgraf, R.W. McCallum, D.C. Jiles, Effect of the elastic modulus of the matrix on magnetostrictive strain in composites. Appl. Phys. Lett. (1999). https://doi.org/10.1063/1.123473

    Article  Google Scholar 

  40. H. Yadav, N. Sinha, S. Goel, B. Kumar, Eu-doped ZnO nanoparticles for dielectric, ferroelectric and piezoelectric applications. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.07.329

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors Sukhendu Sadhukhan wish to acknowledge UGC-CSIR for providing fellowship for research purposes. Authors also wish to acknowledge WBDST (292 (Sanc.)/ST/P/S&T/16G-28/2017, Dated: 28.03.2018) for their financial assistants. Authors want to acknowledge DST-SERB, Govt. of India (EMR/2017/000832, Dated: 19.03.2018) for the financial assistance. Authors also wish to acknowledge the financial support provided by UGC, Govt. of India, through the CAS program (No. F.530/20/CAS-II/2018 (SAP-I), Dated: 25.07.2018), FIST, DST Govt. of India (Ref: SR/FST/PS-II/2018/52, TPN No- 19862,) and PURSE-II, DST, Govt. of India (No. SR/PURSE Phase-2/34, Dated: 27.02.2017). The UGC-DAE, CSR Mumbai centers should be acknowledged for providing research funds. Authors also wish to acknowledge USIC, The University of Burdwan for providing instrumental facilities required for sample characterization. Special thanks to UGC DAE CSR Indore, and Prof. Alok Banerjee for providing magnetic measurements of the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pabitra K. Chakrabarti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadhukhan, S., Mahapatra, A.S., Mitra, A. et al. Strong modulation effects on magnetoelectric behavior of Co-ferrite nanoparticles incorporated in ZnO medium in nano-regime synthesized in chemical routes. Appl. Phys. A 129, 68 (2023). https://doi.org/10.1007/s00339-022-06345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06345-8

Keywords

Navigation