Skip to main content

Advertisement

Log in

Nanoarchitectonics of eco-friendly nickel oxide nanoplatelets for energy storage

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructured nickel hydroxide coatings were prepared directly by aqueous electrophoretic deposition (EPD) method without binder or organic solvent. β-Ni(OH)2 nanoplatelets were first synthetized by chemical precipitation from nickel nitrate in ammonia under ultrasound. These particles, stabilized at pH ≈ 8, present an equivalent diameter of 250 nm and an electrophoretic mobility of ≈ + 2.5 × 10–8 m2 V−1 s−1. Cathodic EPD was performed at room temperature for different values of particles concentration, deposition time and applied electric field. An optimal coating was achieved using a 1 g L−1 of β-Ni(OH)2 particles suspension during 30 min deposition time at an electric field of 75 V m−1. In this work, the suspension conductivity was studied showing that a very narrow range of conductivity can leads to efficient deposition in aqueous EPD. The β-Ni(OH)2 coatings were heated at 325 °C in air for 1, 2 and 3 h to form NiO films. The electrochemical properties of the NiO films were evaluated by cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD). Significant differences were observed in term of specific capacitance values as a function of annealing time and film thickness. Finally, the film microstructure was determined by the calculation of the electrochemically active surface area (ECSA) using Randles–Ševčík equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig.9
Fig. 10
Fig. 11
Fig.12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. J. Yan, Q. Wang, T. Wei, Z. Fan, Adv. Energy Mater. 4, 1300816 (2014)

    Article  Google Scholar 

  2. J.P. Zheng, P.J. Cygan, T.R. Jow, J. Electrochem. Soc. 142, 2699 (1995)

    Article  ADS  Google Scholar 

  3. S.W. Lee, J. Kim, S. Chen, P.T. Hammond, Y. Shao-Horn, ACS Nano 4, 3889 (2010)

    Article  Google Scholar 

  4. J. Yan, T. Wei, J. Cheng, Z. Fan, M. Zhang, Mater. Res. Bull. 45, 210 (2010)

    Article  Google Scholar 

  5. X. Fan, K. Ni, J. Han, S. Wang, L. Gou, D.-L. Li, Funct. Mater. Lett. 12, 1950073 (2019)

    Article  ADS  Google Scholar 

  6. M. Toufani, S. Kasap, A. Tufani, F. Bakan, S. Weber, E. Erdem, Nanoscale 12, 12790 (2020)

    Article  Google Scholar 

  7. M. Buldu-Akturk, M. Toufani, A. Tufani, E. Erdem, Nanoscale 14, 3269 (2022)

    Article  Google Scholar 

  8. J. Spièce, C. Evangeli, A.J. Robson, A.E. Sachat, L. Haenel, M.I. Alonso, M. Garriga, B.J. Robinson, M. Oehme, J. Schulze, F. Alzina, C.S. Torres, O.V. Kolosov, Nanoscale 13, 10829 (2021)

    Article  Google Scholar 

  9. S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Nanoscale Adv. 1, 2586 (2019)

    Article  ADS  Google Scholar 

  10. A.-L. Brisse, P. Stevens, G. Toussaint, O. Crosnier, T. Brousse, Materials (Basel) 11, 1178 (2018)

    Article  ADS  Google Scholar 

  11. R.S. Kate, S.A. Khalate, R.J. Deokate, J. Alloy. Compd. 734, 89 (2018)

    Article  Google Scholar 

  12. T.F. Yi, T.T. Wei, J. Mei, W. Zhang, Y. Zhu, Y.G. Liu, S. Luo, H. Liu, Y. Lu, Z. Guo, Adv. Sustain. Syst. 4, 1900137 (2020)

    Article  Google Scholar 

  13. J.P. Zheng, T.R. Jow, J. Power Sources 62, 155 (1996)

    Article  ADS  Google Scholar 

  14. J.R. Miller, P. Simon, Science 321, 651 (2008)

    Article  Google Scholar 

  15. M.-S. Wu, D.-S. Chan, K.-H. Lin, J.-J. Jow, Mater. Chem. Phys. 130, 1239 (2011)

    Article  Google Scholar 

  16. Z. Gonzalez, C. Filiatre, C.C. Buron, A.J. Sanchez-Herencia, B. Ferrari, J. Electrochem. Soc. 164, D436 (2017)

    Article  Google Scholar 

  17. H. Yi, H. Wang, Y. Jing, T. Peng, X. Wang, J. Power Sources 285, 281 (2015)

    Article  ADS  Google Scholar 

  18. M. Kundu, L. Liu, Mater. Lett. 144, 114 (2015)

    Article  Google Scholar 

  19. M.C. Bernard, P. Bernard, M. Keddam, S. Senyarich, H. Takenouti, Electrochim. Acta 41, 91 (1996)

    Article  Google Scholar 

  20. D.S. Hall, D.J. Lockwood, C. Bock, B.R. MacDougall, Proc. R. Soc. A 471, 20140792 (2015)

    Article  ADS  Google Scholar 

  21. M.-S. Wu, H.-H. Hsieh, Electrochim. Acta 53, 3427 (2008)

    Article  Google Scholar 

  22. J. Moghaddam, E. Hashemi, Korean J. Chem. Eng. 31, 503 (2014)

    Article  Google Scholar 

  23. S. Cabanas-Polo, Z. Gonzalez, A.J. Sanchez-Herencia, B. Ferrari, CrystEngComm 17, 6193 (2015)

    Article  Google Scholar 

  24. M.-G. Ma, J.-F. Zhu, J.-X. Jiang, R.-C. Sun, Mater. Lett. 63, 1791 (2009)

    Article  Google Scholar 

  25. Z. Zhu, N. Wei, H. Liu, Z. He, Adv. Powder Technol. 22, 422 (2011)

    Article  Google Scholar 

  26. P. Bon, I. Zhitomirsky, J.D. Embury, Surf. Eng. 20, 5 (2004)

    Article  Google Scholar 

  27. Y. Liu, F. Liu, J. Bai, T. Liu, Z. Yu, M. Dai, L. Zhou, H. Wang, Y. Zhang, H. Suo, G. Lu, Sens. Actuators B Chem. 296, 126619 (2019)

    Article  Google Scholar 

  28. D.-S. Kong, J.-M. Wang, H.-B. Shao, J.-Q. Zhang, C. Cao, J. Alloy. Compd. 509, 5611 (2011)

    Article  Google Scholar 

  29. Y. Du, W. Wang, X. Li, J. Zhao, J. Ma, Y. Liu, G. Lu, Mater. Lett. 68, 168 (2012)

    Article  Google Scholar 

  30. E. Zhang, Y. Tang, Y. Zhang, C. Guo, L. Yang, Mater. Res. Bull. 44, 1765 (2009)

    Article  Google Scholar 

  31. X. Zhang, W. Shi, J. Zhu, W. Zhao, J. Ma, S. Mhaisalkar, T.L. Maria, Y. Yang, H. Zhang, H.H. Hng, Q. Yan, Nano Res. 3, 643 (2010)

    Article  Google Scholar 

  32. L. Besra, M. Liu, Prog. Mater Sci. 52, 1 (2007)

    Article  Google Scholar 

  33. A.R. Boccaccini, S. Keim, R. Ma, Y. Li, I. Zhitomirsky, J. R. Soc. Interface 7, S581 (2010)

    Article  Google Scholar 

  34. B. Ferrari, R. Moreno, L. Hernán, M. Melero, J. Morales, A. Caballero, J. Eur. Ceram. Soc. 27, 3823 (2007)

    Article  Google Scholar 

  35. P. Sarkar, D. De, T. Uchikochi, L. Besra, in Electrophoretic Deposition of Nanomaterials. ed. by J.H. Dickerson, A.R. Boccaccini (Springer, New York, 2012), pp.181–215

    Chapter  Google Scholar 

  36. J.H. Dickerson, A.R. Boccaccini (eds.), Electrophoretic Deposition of Nanomaterials (Springer, New York, 2012)

    Google Scholar 

  37. J. van Tassel, C.A. Randall, J. Mater. Sci. 39, 867 (2004)

    Article  ADS  Google Scholar 

  38. G. Anne, K. Vanmeensel, J. Vleugels, O. Van der Biest, Colloid Surf. A Physicochem. Eng. Asp. 245, 35 (2004)

    Article  Google Scholar 

  39. S. Hayashi, Z.-E. Nakagawa, A. Yasumori, K. Okada, J. Eur. Ceram. Soc 19, 75 (1999)

    Article  Google Scholar 

  40. O. Khanali, M. Rajabi, S. Baghshahi, S. Ariaee, Surf. Eng. 33, 310 (2017)

    Article  Google Scholar 

  41. Z. Gonzalez, A.M. Perez-Mas, C. Blanco, M. Granda, R. Santamaria, Mater. Des. 160, 58 (2018)

    Article  Google Scholar 

  42. Y.-C. Wang, I.-C. Leu, M.-H. Hon, J. Am. Ceram. Soc. 87, 84 (2004)

    Article  Google Scholar 

  43. S. Novak, K. König, Ceram. Int. 35, 2823 (2009)

    Article  Google Scholar 

  44. C. Mendoza, Z. González, Y. Castro, E. Gordo, B. Ferrari, J. Eur. Ceram. Soc. 36, 307 (2016)

    Article  Google Scholar 

  45. L. Pei, X. Zhang, L. Zhang, Y. Zhang, Y. Xu, Mater. Lett. 162, 238 (2016)

    Article  Google Scholar 

  46. F. Bozza, N. Bonanos, Solid State Ion. 213, 98 (2012)

    Article  Google Scholar 

  47. F. Bozza, R. Polini, E. Traversa, Fuel Cells 8, 344 (2008)

    Article  Google Scholar 

  48. A. Iregren, Environ. Health Perspect. 104, 361 (1996)

    Google Scholar 

  49. B. Ferrari, J.C. Farinas, R. Moreno, J. Am. Ceram. Soc. 84, 733 (2001)

    Article  Google Scholar 

  50. Z. Gonzalez, B. Ferrari, A.J. Sanchez-Herencia, A. Caballero, J. Morales, Electrochim. Acta 211, 110 (2016)

    Article  Google Scholar 

  51. Z. Gonzalez, J. Yus, A. Caballero, J. Morales, A.J. Sanchez-Herencia, B. Ferrari, Electrochim. Acta 247, 333 (2017)

    Article  Google Scholar 

  52. C. Dange-Delbaere, C.C. Buron, M. Euvrard, C. Filiatre, Colloid Surf. A Physicochem. Eng. Asp. 493, 1 (2016)

    Article  Google Scholar 

  53. O. Geuli, Q. Hao, D. Mandler, Electrochim. Acta 318, 51 (2019)

    Article  Google Scholar 

  54. M. Yao, Z. Zeng, H. Zhang, J. Yan, X. Liu, Electrochim. Acta 281, 312 (2018)

    Article  Google Scholar 

  55. M.-S. Wu, C.-Y. Huang, J.-J. Jow, Electrochem. Commun. 11, 779 (2009)

    Article  Google Scholar 

  56. S. Cabanas-Polo, K.S. Suslick, A.J. Sanchez-Herencia, Ultrason. Sonochem. 18, 901 (2011)

    Article  Google Scholar 

  57. R. J. Hunter, in Introduction to modern colloid science, 1st edn. Oxford Sci Publ (1993)

  58. O.S. Pokrovsky, J. Schott, Geochim. Cosmochim. Acta 68, 31 (2004)

    Article  ADS  Google Scholar 

  59. B. Ferrari, R. Moreno, Mater. Lett. 28, 353 (1996)

    Article  Google Scholar 

  60. R.N. Basu, C.A. Randall, M.J. Mayo, J. Am. Ceram. Soc. 84, 33 (2001)

    Article  Google Scholar 

  61. K.R. Kort, S. Banerjee, J. Phys. Chem. B 117, 1585 (2013)

    Article  Google Scholar 

  62. A.J. Tkalych, K. Yu, E.A. Carter, J. Phys. Chem. C 119, 24315 (2015)

    Article  Google Scholar 

  63. C.-B. Wang, G.-Y. Gau, S.-J. Gau, C.-W. Tang, J.-L. Bi, Catal Lett 101, 241 (2005)

    Article  Google Scholar 

  64. Z. Gonzalez, A.J. Sanchez-Herencia, B. Ferrari, A. Caballero, J. Morales, KEM 654, 58 (2015)

    Article  Google Scholar 

  65. Y. Gogotsi, R.M. Penner, ACS Nano 12, 2081 (2018)

    Article  Google Scholar 

  66. J. Huang, T. Lei, X. Wei, X. Liu, T. Liu, D. Cao, J. Yin, G. Wang, J. Power Sources 232, 370 (2013)

    Article  Google Scholar 

  67. J. Yus, B. Ferrari, A.J. Sanchez-Herencia, Z. Gonzalez, Electrochim. Acta 335, 135629 (2020)

    Article  Google Scholar 

  68. J. Yus, Y. Bravo, A.J. Sanchez-Herencia, B. Ferrari, Z. Gonzalez, Electrochim. Acta 308, 363 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Marie-Laure LEONARD from ESIREM, Université de Bourgogne for TGA analysis and Virginie MOUTARLIER for XRD analysis and Nicolas ROUGE for SEM analysis from UTINAM Institute platform.

Funding

Funding was provided by Ministère de l'Enseignement supérieur, de la Recherche et de l'Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Pochard.

Ethics declarations

Conflict of interest

I, Isabelle Pochard, corresponding author declare that we are not and shall not be in any situation which could give rise to a conflict of interest in what concerns this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouhtadi, S., Urra, O., Buron, C.C. et al. Nanoarchitectonics of eco-friendly nickel oxide nanoplatelets for energy storage. Appl. Phys. A 129, 6 (2023). https://doi.org/10.1007/s00339-022-06278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-06278-2

Keywords

Navigation